Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
基本信息
- 批准号:2308969
- 负责人:
- 金额:$ 87.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports research in relativity and relativistic astrophysics, and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Quantum mechanics is the branch of physics used to explain the microscopic atomic and subatomic scale world. Quantum behavior is inherently different than the human experience of the macroscopic world. Hallmarks of quantum systems include fundamental uncertainty and entanglement. These quantum phenomena can be exploited to make more precise measurements of physical quantities. For example, quantum engineering allows scientists to measure the distance between the mirrors of a gravitational wave detector (GWD) with sub-attometer precision. This project pertains to an ongoing experimental program to develop quantum systems to probe fundamental quantum phenomena, as well as for applications to precision quantum noise-limited measurement. The emphasis of the research group is understanding and manipulating quantum noise in GWDs, which is important both for improved performance of GWDs, and also for probing fundamental quantum phenomena such as squeezing and entanglement on macroscopic scales. Diversity underpins the scientific and personnel aspects of the proposed work. The scientific diversity arises from the necessarily cross-disciplinary nature of the proposed research: it combines the techniques and formalism of quantum optics, optomechanics, and quantum measurement science with GWDs. The personnel diversity is the outcome of deliberate recruitment of women and minority students by the PI (herself a member of multiple minority groups), through her own efforts as well as those of the outreach programs of the LIGO Laboratory and MIT. Additionally, quantum science is popular with students (over a dozen Ph.D. and undergraduate theses have derived from this research program), and generates considerable enthusiasm with the public as well.The proposed experimental program aims to study multiple manifestations of quantum fluctuations and their effect on optical measurements and on motion of macroscopic objects. This allows for testing fundamental tenets of quantum mechanics, and also for making advances in quantum technologies for optical sensing and precision force and position measurement. The group is carrying out two experiments that exploit quantum fluctuations of light and mechanical motion. One experiment explores quantum effects in optomechanical systems where the radiation-pressure interaction between light and mechanical motion is engineered to dominate. Cavity optomechanics experiments with mechanical oscillators spanning nanogram- to kilogram-scales have featured prominently in this research program, where the interaction between light and mechanical motion is used to generate and manipulate quantum states. These experiments have successfully demonstrated optical cooling and trapping techniques for macroscopic mirrors, have enabled direct observation and evasion of quantum radiation pressure (backaction) noise that is a major limiting noise source in Advanced LIGO, and generation of broadband optomechanical squeezing as a promising alternative method for generating squeezed states of light suitable for future GW detectors. An important feature of this optomechanics platform is that it is designed to achieve the quantum regime with macroscopic mechanical oscillators that are not cryogenically pre-cooled. The immediate next goals are to observe conditionally squeezed mechanical states on the path toward creating quantum states of mirrors that are part of a room temperature optomechanics platform. The other experiment advances squeezed light technology for precision measurement. Specifically, the group is working on a compact squeezed light source based on nonlinear optical materials that is to be used to study and reduce quantum noise in linear optical amplification processes, and will be a steppingstone to an eventual squeezer-on-a-chip.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并介绍了NSF“宇宙上的Windows”的优先领域。量子力学是用于解释微观原子和亚原子量表世界的物理学分支。量子行为本质上与宏观世界的人类经验不同。量子系统的标志包括根本的不确定性和纠缠。这些量子现象可以被利用以对物理量进行更精确的测量。例如,量子工程允许科学家以子测试计精度测量重力波检测器(GWD)的镜子之间的距离。该项目与正在进行的实验计划有关,以开发量子系统来探测基本量子现象,以及用于精确量子噪声限制测量的应用。研究小组的重点是理解和操纵GWD中的量子噪声,这对于改善GWD的性能至关重要,也对探测基本量子现象(例如在宏观尺度上挤压和纠缠)的基本量子现象很重要。多样性是拟议工作的科学和人员方面的基础。科学多样性源于拟议研究的必然跨学科性质:它结合了量子光学,光学机械和量子测量科学的技术和形式主义与GWDS的技术和形式主义。人事多样性是通过自己的努力以及Ligo实验室和麻省理工学院的外展计划的努力,由PI(自己是多个少数群体的成员)故意招募妇女和少数族裔学生的结果。此外,量子科学在学生中很受欢迎(超过十几个博士学位和本科论文从该研究计划中得出),并在公众中也产生了极大的热情。拟议的实验计划旨在研究量子波动的多种表现及其对光学测量和对摩croccopopic对象的运动的影响。这允许测试量子力学的基本原则,还可以在光学传感和精确力和位置测量方面的量子技术方面进步。该小组正在进行两个实验,以利用光和机械运动的量子波动。一个实验探索了光学机械系统中的量子效应,其中光和机械运动之间的辐射压力相互作用被设计为主导。跨纳米图到千克尺度的机械振荡器的腔光力学实验在该研究计划中显着,其中光和机械运动之间的相互作用用于产生和操纵量子状态。这些实验已成功地证明了宏观镜像的光冷却和捕获技术,使得能够直接观察和逃避量子辐射压力(反向)噪声,这是高级李戈的主要限制噪声源,以及宽带光学机电挤压的产生,是一种适合于未来的gw detectors squeeez squeeez的替代方法。该光学机学平台的一个重要特征是,它旨在实现宏观机械振荡器的量子状态,这些机械振荡器不是冷冻冷却的。直接的下一个目标是观察到有条件地挤压机械状态,以创建镜像的量子状态,这些镜子是室温光学机械平台的一部分。另一个实验挤压了轻型技术,以进行精确测量。 具体而言,该小组正在基于非线性光学材料进行紧凑的挤压光源进行研究,该材料将用于研究和减少线性光学放大过程中的量子噪声,将是最终在A-Chip上进行Squeezers的阶梯,这是NSF的法定任务,反映了通过评估的构成者的构成者的构成及其范围的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nergis Mavalvala其他文献
Nergis Mavalvala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nergis Mavalvala', 18)}}的其他基金
Quantum Optomechanics: From Fundamental Tests to Quantum Tools of the Future
量子光力学:从基础测试到未来的量子工具
- 批准号:
2012088 - 财政年份:2020
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
- 批准号:
1707840 - 财政年份:2017
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
- 批准号:
1404245 - 财政年份:2014
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
- 批准号:
1068772 - 财政年份:2011
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Quantum effects in radiation-pressure-dominated optomechanical systems
辐射压主导光机械系统中的量子效应
- 批准号:
0758188 - 财政年份:2008
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Development of Technologies for Sub-Quantum-Noise-Limited Gravitational-wave Interferometers
亚量子噪声限制引力波干涉仪技术发展
- 批准号:
0457264 - 财政年份:2005
- 资助金额:
$ 87.81万 - 项目类别:
Continuing grant
Experimental Tests of Non-Classical (Squeezed) Light in Advanced Gravitational-wave Interferometers
先进引力波干涉仪中非经典(压缩)光的实验测试
- 批准号:
0300345 - 财政年份:2003
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant
相似国自然基金
混合光机械系统中光子和声子的调控及量子效应研究
- 批准号:11804074
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
量子相干调控下量子限制结构的非线性光学现象的理论研究
- 批准号:11775190
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
量子点和光子晶体微腔耦合体系制备纠缠光子对的研究
- 批准号:11704423
- 批准年份:2017
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
光学腔内机械振子的超灵敏探测
- 批准号:11704126
- 批准年份:2017
- 资助金额:31.0 万元
- 项目类别:青年科学基金项目
基于复合腔光力系统的机械振子冷却与量子态制备研究
- 批准号:11674390
- 批准年份:2016
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
次世代重力波望遠鏡のための光学機械相互作用を用いた標準量子限界超越測定技術の開発
开发下一代引力波望远镜光机交互标准量子极限超越测量技术
- 批准号:
23K25896 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
特定分子量成分の直接観察による分子量分布と力学物性の関係解明への挑戦
通过直接观察特定分子量成分来阐明分子量分布与机械性能之间的关系的挑战
- 批准号:
23K13798 - 财政年份:2023
- 资助金额:
$ 87.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
理論的手法による光受容タンパク質の吸収波長と分子機能の制御機構の解明
用理论方法阐明光感受器蛋白吸收波长和分子功能的控制机制
- 批准号:
22KJ1109 - 财政年份:2023
- 资助金额:
$ 87.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
次世代重力波望遠鏡のための光学機械相互作用を用いた標準量子限界超越測定技術の開発
开发下一代引力波望远镜光机交互标准量子极限超越测量技术
- 批准号:
23H01200 - 财政年份:2023
- 资助金额:
$ 87.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design for the exciton-based molecular logic gates for quantum computing
用于量子计算的基于激子的分子逻辑门的设计
- 批准号:
22K03480 - 财政年份:2022
- 资助金额:
$ 87.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)