Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
基本信息
- 批准号:2308969
- 负责人:
- 金额:$ 87.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports research in relativity and relativistic astrophysics, and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Quantum mechanics is the branch of physics used to explain the microscopic atomic and subatomic scale world. Quantum behavior is inherently different than the human experience of the macroscopic world. Hallmarks of quantum systems include fundamental uncertainty and entanglement. These quantum phenomena can be exploited to make more precise measurements of physical quantities. For example, quantum engineering allows scientists to measure the distance between the mirrors of a gravitational wave detector (GWD) with sub-attometer precision. This project pertains to an ongoing experimental program to develop quantum systems to probe fundamental quantum phenomena, as well as for applications to precision quantum noise-limited measurement. The emphasis of the research group is understanding and manipulating quantum noise in GWDs, which is important both for improved performance of GWDs, and also for probing fundamental quantum phenomena such as squeezing and entanglement on macroscopic scales. Diversity underpins the scientific and personnel aspects of the proposed work. The scientific diversity arises from the necessarily cross-disciplinary nature of the proposed research: it combines the techniques and formalism of quantum optics, optomechanics, and quantum measurement science with GWDs. The personnel diversity is the outcome of deliberate recruitment of women and minority students by the PI (herself a member of multiple minority groups), through her own efforts as well as those of the outreach programs of the LIGO Laboratory and MIT. Additionally, quantum science is popular with students (over a dozen Ph.D. and undergraduate theses have derived from this research program), and generates considerable enthusiasm with the public as well.The proposed experimental program aims to study multiple manifestations of quantum fluctuations and their effect on optical measurements and on motion of macroscopic objects. This allows for testing fundamental tenets of quantum mechanics, and also for making advances in quantum technologies for optical sensing and precision force and position measurement. The group is carrying out two experiments that exploit quantum fluctuations of light and mechanical motion. One experiment explores quantum effects in optomechanical systems where the radiation-pressure interaction between light and mechanical motion is engineered to dominate. Cavity optomechanics experiments with mechanical oscillators spanning nanogram- to kilogram-scales have featured prominently in this research program, where the interaction between light and mechanical motion is used to generate and manipulate quantum states. These experiments have successfully demonstrated optical cooling and trapping techniques for macroscopic mirrors, have enabled direct observation and evasion of quantum radiation pressure (backaction) noise that is a major limiting noise source in Advanced LIGO, and generation of broadband optomechanical squeezing as a promising alternative method for generating squeezed states of light suitable for future GW detectors. An important feature of this optomechanics platform is that it is designed to achieve the quantum regime with macroscopic mechanical oscillators that are not cryogenically pre-cooled. The immediate next goals are to observe conditionally squeezed mechanical states on the path toward creating quantum states of mirrors that are part of a room temperature optomechanics platform. The other experiment advances squeezed light technology for precision measurement. Specifically, the group is working on a compact squeezed light source based on nonlinear optical materials that is to be used to study and reduce quantum noise in linear optical amplification processes, and will be a steppingstone to an eventual squeezer-on-a-chip.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并解决了NSF“宇宙之窗”大理念的优先领域。量子力学是物理学的分支,用于解释微观原子和亚原子尺度的世界。量子行为本质上不同于人类对宏观世界的体验。量子系统的特点包括基本的不确定性和纠缠。这些量子现象可以用来对物理量进行更精确的测量。例如,量子工程使科学家能够以亚attometer的精度测量引力波探测器(GWD)的镜子之间的距离。该项目涉及一个正在进行的实验计划,以开发量子系统来探测基本量子现象,以及应用于精确的量子噪声限制测量。研究小组的重点是理解和操纵GWD中的量子噪声,这对于提高GWD的性能以及探测宏观尺度上的压缩和纠缠等基本量子现象都很重要。多样性是拟议工作的科学和人员方面的基础。科学的多样性来自于所提出的研究的必然的跨学科性质:它将量子光学、光学力学和量子测量科学的技术和形式主义与GWD相结合。人员多样性是PI(她自己是多个少数群体的成员)通过自己的努力以及LIGO实验室和麻省理工学院的外联计划故意招募女性和少数民族学生的结果。此外,量子科学很受学生欢迎(超过12个博士学位。该实验计划旨在研究量子涨落的多种表现形式及其对光学测量和宏观物体运动的影响。这允许测试量子力学的基本原理,也允许在光学传感和精确力和位置测量的量子技术方面取得进展。该小组正在进行两项实验,利用光和机械运动的量子波动。一个实验探索了光机械系统中的量子效应,其中光和机械运动之间的辐射压力相互作用被设计为占主导地位。腔光学力学实验与机械振荡器跨越纳克到公斤尺度在这个研究计划中有突出的特点,其中光和机械运动之间的相互作用被用来产生和操纵量子态。这些实验已经成功地证明了宏观镜的光学冷却和捕获技术,使直接观察和规避量子辐射压力(反作用)噪声,这是先进的LIGO的主要限制噪声源,并产生宽带光机械压缩作为一个有前途的替代方法产生压缩状态的光适合未来的GW探测器。这个光学机械平台的一个重要特征是,它被设计为实现量子机制与宏观机械振荡器,没有低温预冷却。下一个目标是观察有条件压缩的力学状态,以创建作为室温光力学平台一部分的镜子的量子态。另一个实验推进了用于精密测量的压缩光技术。 具体而言,该研究小组正在研究一种基于非线性光学材料的紧凑型压缩光源,该光源将用于研究和降低线性光学放大过程中的量子噪声,并将成为最终实现片上压缩器的垫脚石。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nergis Mavalvala其他文献
Quantum metrology for gravitational wave astronomy
引力波天文学的量子计量学
- DOI:
10.1038/ncomms1122 - 发表时间:
2010-11-16 - 期刊:
- 影响因子:15.700
- 作者:
Roman Schnabel;Nergis Mavalvala;David E. McClelland;Ping K. Lam - 通讯作者:
Ping K. Lam
Raman study of defects in a GaAs buffer layer grown by low-temperature molecular beam epitaxy
- DOI:
10.1007/bf02673349 - 发表时间:
1990-11-01 - 期刊:
- 影响因子:2.500
- 作者:
R. S. Berg;Nergis Mavalvala;Tracie Steinberg;F. W. Smith - 通讯作者:
F. W. Smith
Nergis Mavalvala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nergis Mavalvala', 18)}}的其他基金
Quantum Optomechanics: From Fundamental Tests to Quantum Tools of the Future
量子光力学:从基础测试到未来的量子工具
- 批准号:
2012088 - 财政年份:2020
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
- 批准号:
1707840 - 财政年份:2017
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
- 批准号:
1404245 - 财政年份:2014
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
- 批准号:
1068772 - 财政年份:2011
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Quantum effects in radiation-pressure-dominated optomechanical systems
辐射压主导光机械系统中的量子效应
- 批准号:
0758188 - 财政年份:2008
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Development of Technologies for Sub-Quantum-Noise-Limited Gravitational-wave Interferometers
亚量子噪声限制引力波干涉仪技术发展
- 批准号:
0457264 - 财政年份:2005
- 资助金额:
$ 87.81万 - 项目类别:
Continuing grant
Experimental Tests of Non-Classical (Squeezed) Light in Advanced Gravitational-wave Interferometers
先进引力波干涉仪中非经典(压缩)光的实验测试
- 批准号:
0300345 - 财政年份:2003
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant
相似国自然基金
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Fellowship
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
- 批准号:
2309086 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Investigation of Stress Induced Birefringence and Refractive Index Changes in Glass for Fabricating Novel Optics
RII Track-4:NSF:用于制造新型光学器件的玻璃中应力引起的双折射和折射率变化的研究
- 批准号:
2327218 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant
Adaptive Optics for Advanced Gravitational Wave Detectors
用于先进引力波探测器的自适应光学器件
- 批准号:
LE230100122 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Probing Solar Axions with X-ray Optics for BabyIAXO
使用 BabyIAXO 的 X 射线光学器件探测太阳轴子
- 批准号:
2309980 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
- 批准号:
2309087 - 财政年份:2024
- 资助金额:
$ 87.81万 - 项目类别:
Continuing Grant
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
- 批准号:
23H01987 - 财政年份:2023
- 资助金额:
$ 87.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Adaptive Optics for Ophthalmic Imaging
用于眼科成像的自适应光学
- 批准号:
2877426 - 财政年份:2023
- 资助金额:
$ 87.81万 - 项目类别:
Studentship
IUCRC Phase III University of Rochester: Center for Freeform Optics (CeFO)
IUCRC 第三阶段罗彻斯特大学:自由曲面光学中心 (CeFO)
- 批准号:
2310640 - 财政年份:2023
- 资助金额:
$ 87.81万 - 项目类别:
Standard Grant