Quantum effects in radiation-pressure-dominated optomechanical systems

辐射压主导光机械系统中的量子效应

基本信息

  • 批准号:
    0758188
  • 负责人:
  • 金额:
    $ 88.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Next-generation interferometric gravitational-wave (GW) detectors, such as the Advanced LIGO detectors, will be limited by quantum noise at almost all frequencies in the GW band: radiation-pressure noise at low frequencies and shot noise at high frequencies. This quantum noise limit (QNL) is reached due to extremely high circulating laser power, in addition to mitigation of other classical noise sources. Studying quantum noise limits and finding ways to circumvent them is important not only for improved performance of future GW detectors, but also allows for the study of fundamental quantum effects, such as squeezing and entanglement, in macroscopic mechanical systems.This award supports an experimental research program to generate and characterize quantum states arising from the interaction of light with macroscopic mechanical systems, with the goal to better understand the fundamental limits of quantum measurement, as well as to improve the performance of interferometric gravitational-wave detectors. The centerpiece of the research program is a meter-scale interferometer with low-mass suspended mirrors, high circulating power, and a quantum-limited readout. Experiments will be conducted to study the following radiation pressure induced phenomena, using variants of this single apparatus: (1) Observation of ponderomotive squeezing, a novel alternative to the more traditional use of nonlinear optical media, that relies on the fundamental quantum mechanics of the shot noise and radiation-pressure noise correlations in an optomechanical oscillator system. This is one of the hallmarks of quantum effects in quantum-noise-dominated gravitational-wave interferometers, such as the Advanced LIGO detectors, and warrants studying in prototype interferometers. (2) Observation of ground state cooling of a macroscopic object is possible because radiation pressure can be used to reduce the motion of objects without introducing thermal noise---a much sought after goal in the realm of quantum measurement. (3) Observation of quantum entanglement, arising from radiation pressure induced coupling of the motion of the mirror and the quantum radiation field. (4) Direct observation quantum radiation pressure noise. Advanced LIGO is expected to be limited by quantum radiation pressure noise in the lowest part of its detection band, and studying the interaction of this noise source with the optomechanical system is likely to reveal deeper understanding, or even new physics. None of these phenomena have been observed experimentally to date. The main purpose of this research program is to gain further understanding of radiation-pressure dominated interferometers, an important feature of next-generation gravitational wave detectors. Equally attractive is the prospect of exploring the fundamental physics of quantum correlations due to optical-mechanical couplings in a macroscopic mechanical oscillator system. The broader impact of the proposed work lies in its scientific and its personnel diversity. The scientific diversity arises from the necessarily cross-disciplinary nature of the proposed research: it combines the techniques and formalism of quantum optics and quantum measurement theory with gravitational-wave detection. The personnel diversity is the outcome of aggressive recruitment of women and minority students by the PI (herself a member of minority groups), through her own efforts as well as those of the outreach programs of the LIGO Laboratory and MIT. In addition, the sub-QNL measurements are popular with students and generate considerable enthusiasm with the public as well. The proposed experiments share common technologies with quantum teleportation, quantum information, quantum control and condensed matter physics (nano- and micro-mechanical oscillators).
下一代干涉引力波(GW)探测器,如先进的LIGO探测器,将受到GW波段几乎所有频率的量子噪声的限制:低频的辐射压力噪声和高频的散粒噪声。这一量子噪声极限(QNL)是由于极高的循环激光功率,加上其他经典噪声源的缓解。研究量子噪声极限并找到规避它们的方法不仅对提高未来GW探测器的性能很重要,而且有助于研究宏观机械系统中的基本量子效应,如压缩和纠缠。该奖项支持一项实验研究计划,该计划旨在产生和表征光与宏观机械系统相互作用产生的量子态,目的是更好地了解量子测量的基本极限,以及提高干涉型引力波探测器的性能。该研究计划的核心是一种米级干涉仪,它具有低质量的悬浮镜、高循环功率和量子限制读数。我们将用这个单一装置的变种来进行实验,以研究下列辐射压力诱导现象:(1)有质动力压缩的观测,这是一种更传统的使用非线性光学介质的新方法,它依赖于光机械振荡器系统中散粒噪声和辐射压力噪声关联的基本量子力学。这是以量子噪声为主的引力波干涉仪中量子效应的标志之一,例如先进的LIGO探测器,因此有必要研究原型干涉仪。(2)观测宏观物体的基态冷却是可能的,因为辐射压力可以在不引入热噪声的情况下减少物体的运动-这在量子测量领域是一个备受追捧的目标。(3)观察到由辐射压力引起的反射镜运动与量子辐射场的耦合所产生的量子纠缠。(4)直接观测量子辐射压强噪声。先进的LIGO有望在其探测波段的最低部分受到量子辐射压力噪声的限制,研究这种噪声源与光学机械系统的相互作用可能会揭示更深层次的理解,甚至是新的物理。到目前为止,还没有在实验中观察到这些现象。这项研究计划的主要目的是进一步了解辐射压力为主的干涉仪,这是下一代引力波探测器的重要特征。同样吸引人的是探索宏观机械振子系统中由于光-机械耦合而产生的量子关联的基本物理学的前景。拟议工作的更广泛影响在于其科学和人员多样性。科学多样性源于拟议研究的必然跨学科性质:它将量子光学和量子测量理论的技术和形式主义与引力波探测结合在一起。人员多样性是国际学生联合会(她自己也是少数群体成员)积极招募妇女和少数族裔学生的结果,她自己以及LIGO实验室和麻省理工学院的外联计划都是这样做的。此外,次级QNL测量在学生中很受欢迎,也在公众中产生了相当大的热情。拟议中的实验共享量子隐形传态、量子信息、量子控制和凝聚态物理(纳米和微机械振荡器)的共同技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nergis Mavalvala其他文献

Quantum metrology for gravitational wave astronomy
引力波天文学的量子计量学
  • DOI:
    10.1038/ncomms1122
  • 发表时间:
    2010-11-16
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Roman Schnabel;Nergis Mavalvala;David E. McClelland;Ping K. Lam
  • 通讯作者:
    Ping K. Lam
Raman study of defects in a GaAs buffer layer grown by low-temperature molecular beam epitaxy
  • DOI:
    10.1007/bf02673349
  • 发表时间:
    1990-11-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    R. S. Berg;Nergis Mavalvala;Tracie Steinberg;F. W. Smith
  • 通讯作者:
    F. W. Smith

Nergis Mavalvala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nergis Mavalvala', 18)}}的其他基金

Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
  • 批准号:
    2308969
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Standard Grant
Quantum Optomechanics: From Fundamental Tests to Quantum Tools of the Future
量子光力学:从基础测试到未来的量子工具
  • 批准号:
    2012088
  • 财政年份:
    2020
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Standard Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
  • 批准号:
    1707840
  • 财政年份:
    2017
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
  • 批准号:
    1404245
  • 财政年份:
    2014
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
  • 批准号:
    1068772
  • 财政年份:
    2011
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Continuing Grant
Development of Technologies for Sub-Quantum-Noise-Limited Gravitational-wave Interferometers
亚量子噪声限制引力波干涉仪技术发展
  • 批准号:
    0457264
  • 财政年份:
    2005
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Continuing grant
Experimental Tests of Non-Classical (Squeezed) Light in Advanced Gravitational-wave Interferometers
先进引力波干涉仪中非经典(压缩)光的实验测试
  • 批准号:
    0300345
  • 财政年份:
    2003
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
NPM1表观重塑巨噬细胞代谢及修复表型在心肌缺血损伤中的调控作用
  • 批准号:
    82371825
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
  • 批准号:
    82371317
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
  • 批准号:
    32371121
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目
动态整体面孔认知加工的认知机制的研究
  • 批准号:
    31070908
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
磁性隧道结的势垒及电极无序效应的研究
  • 批准号:
    10874076
  • 批准年份:
    2008
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
抗抑郁剂调控细胞骨架蛋白的功能研究
  • 批准号:
    30472018
  • 批准年份:
    2004
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of biostimulants and nanobubbles on yield and solar radiation use efficiency of cabbage
生物刺激剂和纳米气泡对甘蓝产量和太阳辐射利用效率的影响
  • 批准号:
    23K05201
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the mechanism of low-dose radiation effects using fluctuation-based analysis
使用基于波动的分析了解低剂量辐射效应的机制
  • 批准号:
    23K18522
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Advancing skin cancer prevention by tackling UV-induced clonogenic mutations
通过应对紫外线诱导的克隆突变来促进皮肤癌的预防
  • 批准号:
    10829054
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
  • 批准号:
    10715019
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
Peripherally-restricted non-addictive cannabinoids for cancer pain treatment
用于癌症疼痛治疗的外周限制性非成瘾大麻素
  • 批准号:
    10726405
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
Photothermal Catalysis: Using light to thermally generate reactive intermediates with temporal and spatial control
光热催化:利用光热生成具有时间和空间控制的反应中间体
  • 批准号:
    10713733
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
Development of contrast agents to facilitate image-guided surgery
开发造影剂以促进图像引导手术
  • 批准号:
    10810184
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
Targeting the HMGB1-TLR5 pathway to prevent senescence-induced metastasis in breast cancer.
靶向 HMGB1-TLR5 通路预防乳腺癌衰老诱导的转移。
  • 批准号:
    10599637
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
The Effects of Coupled Wave Power and Plasma Properties on Radiation Belt Dynamics
耦合波功率和等离子体特性对辐射带动力学的影响
  • 批准号:
    NE/X000389/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
    Research Grant
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
  • 批准号:
    10678157
  • 财政年份:
    2023
  • 资助金额:
    $ 88.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了