Polarization-Resolved Single-Photon Measurements of Nonlinear Thomson Scattering

非线性汤姆逊散射的偏振分辨单光子测量

基本信息

  • 批准号:
    1708185
  • 负责人:
  • 金额:
    $ 36.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Advances in laser technology have made it possible to create exceptionally bright light inside a tiny region where a laser beam is focused. This project will develop a new way to study the optical fields near such a laser focus. The electric and magnetic fields in such extreme light can rip electrons away from any substance and then accelerate the electrons at more than sextillion (thousand billion billion) g's, where one g is the acceleration due to gravity on Earth. The freed electrons are then propelled to very near the speed of light, so Einstein's equations of relativity are required to describe their motion. Electrons under these extreme conditions scatter wavelength-shifted light out of the laser focus (called nonlinear Thomson scattering), and this can reveal the dynamics of the electron motion and thus the structure of the laser fields. This research team has developed techniques to distinguish the scattered photons from the quintillion background photons that comprise the laser pulse that drives the electrons. With this project, the team will use the scattered light as a probe to map the strength and polarization of the optical fields in and around the focus. Such a laser focus is challenging to characterize in any other way, since the focus is often as small as an individual pixel on a camera. Furthermore, at full power any camera placed in the focus would be destroyed. Analysis of the electric and magnetic fields inside a very intense but tiny laser focus will be helpful for understanding interactions between laser light and atoms, molecules, and solids that are studied with the world's most powerful lasers. This project will also provide an opportunity for students to be trained on optics and photonics technologies and contribute to progress in fundamental science.The ability to measure individual photons scattered from only a few electrons in a laser focus enables observation of fundamental relativistic phenomena at very low densities (essentially a vacuum). This will allow this team to avoid the confounding influence of plasma dynamics that occur for higher densities. They will study the polarization of nonlinear Thomson scattering in the spatial distribution of the scattered fundamental, second, and third harmonic light. The polarization contains an added dimension of information, which has not previously been investigated or measured. The rich structure in polarization-resolved scattering plots promises new insights into electron dynamics. This team's simulations of relativistic electron trajectories within a tight laser focus show that electron trajectories are sensitive to the details of the field vectors of the laser. The use of a deformable mirror will allow them to create ideal and exotic focal shapes to test the sensitivity of nonlinear Thomson scattering to the details of the vector field distributions in the focus.
激光技术的进步使得在激光束聚焦的微小区域内产生异常明亮的光成为可能。 该项目将开发一种新的方法来研究这种激光焦点附近的光场。 在这种极端的光中,电场和磁场可以将电子从任何物质中剥离出来,然后以超过六万亿(万亿亿)g的速度加速电子,其中一个g是由于地球上的重力而产生的加速度。 自由电子然后被推进到非常接近光速的速度,因此爱因斯坦的相对论方程需要描述它们的运动。 在这些极端条件下,电子将波长偏移的光散射出激光焦点(称为非线性汤姆逊散射),这可以揭示电子运动的动力学,从而揭示激光场的结构。 这个研究小组已经开发出了一种技术,可以将散射的光子与驱动电子的激光脉冲中的五次方背景光子区分开来。 在这个项目中,该团队将使用散射光作为探测器来绘制焦点内和周围光场的强度和偏振。 这样的激光焦点以任何其他方式表征都是具有挑战性的,因为焦点通常与相机上的单个像素一样小。 此外,在全功率下,任何放置在焦点上的相机都会被摧毁。 对非常强烈但微小的激光焦点内的电场和磁场进行分析,将有助于理解激光与原子、分子和固体之间的相互作用,这些都是用世界上最强大的激光进行研究的。 该项目还将为学生提供光学和光子学技术培训的机会,并为基础科学的进步做出贡献。测量激光焦点中仅几个电子散射的单个光子的能力使在非常低的密度(基本上是真空)下观察基本相对论现象成为可能。 这将使该团队能够避免在更高密度下发生的等离子体动力学的混淆影响。 他们将研究非线性汤姆逊散射的偏振在空间分布的散射的基本,第二和第三谐波光。 极化包含一个额外的信息维度,这是以前没有研究或测量过的。 极化分辨散射图中丰富的结构预示着对电子动力学的新见解。该团队对激光聚焦内相对论电子轨迹的模拟表明,电子轨迹对激光场矢量的细节很敏感。使用可变形镜将允许他们创建理想的和奇异的焦点形状,以测试非线性汤姆逊散射对焦点中矢量场分布细节的敏感性。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polarization-Resolved Nonlinear Thomson Scattering from Laser-Driven Electrons
激光驱动电子的偏振分辨非线性汤姆逊散射
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peatross, J.;Pratt, B.;Schulzke, C.;Ware, M.
  • 通讯作者:
    Ware, M.
Measured Polarization Components of Nonlinear Thomson Scattering
非线性汤姆逊散射的测量偏振分量
  • DOI:
    10.1364/cleo_qels.2020.ff2c.2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peatross, J.;Atkinson, N.;Hodge, D.;Pratt, B.;Romero, M.;Schulzke, C.;Ware, M.
  • 通讯作者:
    Ware, M.
Space-time-resolved quantum electrodynamics description of Compton scattering
  • DOI:
    10.1103/physreva.102.062203
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    S. Glasgow;M. Ware
  • 通讯作者:
    S. Glasgow;M. Ware
Polarization Effects in Thomson Scattering by
汤姆逊散射中的偏振效应
Experimental observation of polarization-resolved nonlinear Thomson scattering of elliptically polarized light
  • DOI:
    10.1103/physreva.104.053519
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Colton Fruhling;Junzhi Wang;D. Umstadter;C. Schulzke;M. Romero;M. Ware;J. Peatross
  • 通讯作者:
    Colton Fruhling;Junzhi Wang;D. Umstadter;C. Schulzke;M. Romero;M. Ware;J. Peatross
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Peatross其他文献

Justin Peatross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Peatross', 18)}}的其他基金

Bright Laser High-Order Harmonic Generation
明亮的激光高次谐波产生
  • 批准号:
    0457316
  • 财政年份:
    2005
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
Experiments with Laser High-Order Harmonic Generation and Enhancement of Optics Education
激光高次谐波产生实验与光学教育的加强
  • 批准号:
    9985080
  • 财政年份:
    2000
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Continuing Grant
Enhancement of an Advanced Integrated Student Optics Course
高级综合学生光学课程的增强
  • 批准号:
    9952773
  • 财政年份:
    2000
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
International Postdoctoral Fellows Program: Single-atom Effects Responsible for the Generation of High Harmonics
国际博士后研究员计划:单原子效应导致高次谐波的产生
  • 批准号:
    9302168
  • 财政年份:
    1993
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant

相似海外基金

The "SEISMIC" facility for Spatially rEsolved sIngle and Sub-cellular oMICs
用于空间解析单细胞和亚细胞组学的“SEISMIC”设施
  • 批准号:
    BB/W019116/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Research Grant
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
  • 批准号:
    10724843
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
Time-resolved measurements of single-shot XFEL pulses using frequency resolved optical gating
使用频率分辨光选通对单次 XFEL 脉冲进行时间分辨测量
  • 批准号:
    23K04624
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of magnetic structure and current-induced magnetization in UNi4B by angle-resolved NMR using a single crystal
使用单晶通过角分辨核磁共振研究 UNi4B 中的磁结构和电流感应磁化强度
  • 批准号:
    23K03302
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decoding Spatially Resolved Single Cell Metabolic Trajectory of Tonsil Tissues and Organoids
解码扁桃体组织和类器官的空间分辨单细胞代谢轨迹
  • 批准号:
    10751125
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
A spatially resolved molecular atlas of acute viral myocarditis at single-cell resolution
单细胞分辨率的急性病毒性心肌炎的空间解析分子图谱
  • 批准号:
    10681925
  • 财政年份:
    2023
  • 资助金额:
    $ 36.44万
  • 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
  • 批准号:
    10352579
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
CAS-Climate: Atomically Resolved Single-Molecule Microscopy of Catalytic Intermediates in CO2 Reduction
CAS-Climate:二氧化碳还原催化中间体的原子分辨单分子显微镜
  • 批准号:
    2203589
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
    Standard Grant
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
  • 批准号:
    10612336
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
Time-Resolved Confocal Fluorescence Microscope with Single Molecule Sensitivity
具有单分子灵敏度的时间分辨共焦荧光显微镜
  • 批准号:
    10415601
  • 财政年份:
    2022
  • 资助金额:
    $ 36.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了