Understanding and Controlling Coupled Molecular Motion on Surfaces

理解和控制表面上的耦合分子运动

基本信息

  • 批准号:
    1708397
  • 负责人:
  • 金额:
    $ 44.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Macromolecular, Supramolecular, and Nanochemistry Program of the Chemistry Division, Professor Charles Sykes and his students at Tufts University are investigating ways to couple single molecule devices, already pioneered by his research team with prior NSF funding, into molecular machines and molecular-sized devices capable of performing higher tasks. The ultimate goal of the work is the discovery of design principles for the construction of molecular machines and molecular-sized devices that can more easily integrate with existing technologies. A goal is to gain a better understanding of molecular motion. Control of molecular motion is crucial for the design of new approaches for unique new applications, including tiny molecular-sized pumps, sensors, and optoelectronics. To engage broad audiences in this project, the Sykes research team gives presentations about nanoscienceat local high schools with newly developed demonstrations. YouTube videos featuring the project results are produced. The group has developed a Science Fair between Tufts and Medford High which enables ~300 students per year to interact with graduate researchers about their science project presentations.Single molecule devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. This project takes a new approach using molecular self-assembly to produce 2D crystalline arrays of molecular rotors that display emergent properties like correlated rotational switching. The arrays are synthesized by the Ullmann reaction of precursor molecular rotors with a Cu (111) surface, yielding 2D networks of metal-organic complexes in which the rotary units can interact with each other. Scanning tunneling microscopy enables excitation of the individual rotor groups and the ability to study how reorientation of an individual molecular rotor affects its neighbors. By studying the effect of voltage, current, and tunneling gap distance on rotor motion, the mechanism of excitation will be explored. Altering the size and functionality of the precursor molecules enables control over the placement of the rotor units in the 2D molecular crystals and the ability to study the effect of rotor-rotor spacing and angle on correlated rotational switching. By changing the functionality of the rotor itself, both steric and dipolar coupling will be explored. Finally, chiral rotary units will be introduced as a way to induce unidirectional rotation via a flashing temperature ratchet-like mechanism.
在这个由化学系高分子、超分子和纳米化学项目资助的项目中,塔夫茨大学的Charles Sykes教授和他的学生正在研究如何将他的研究团队在NSF之前的资助下开创的单分子设备耦合到能够执行更高任务的分子机器和分子大小的设备中。这项工作的最终目标是发现构建分子机器和分子大小的设备的设计原则,这些设备可以更容易地与现有技术相结合。一个目标是更好地理解分子运动。分子运动的控制对于设计独特的新应用的新方法至关重要,包括微型分子大小的泵、传感器和光电子学。为了让更多的受众参与到这个项目中来,赛克斯研究小组在当地高中进行了纳米科学的演讲,并进行了新的演示。制作了以项目结果为特色的YouTube视频。该小组在塔夫茨和梅德福德高中之间开发了一个科学博览会,每年可以让大约300名学生与研究生互动,讨论他们的科学项目演示。单分子设备能够执行从机械运动到简单计算的一系列功能。然而,由于它们彼此耦合或与电极等接口耦合相关的困难,它们的用途在某种程度上受到限制。这个项目采用了一种新的方法,使用分子自组装来产生分子转子的2D晶体阵列,这些晶体阵列显示出相关的旋转开关等紧急性质。阵列是通过前体分子旋转体与铜(111)表面的乌尔曼反应合成的,产生了金属-有机络合物的2D网络,其中旋转单元可以相互作用。扫描隧道显微镜能够激发单个转子群,并能够研究单个分子转子的重新定向如何影响其邻居。通过研究电压、电流和隧道间距对转子运动的影响,探讨励磁机理。通过改变前体分子的大小和功能,可以控制转子单元在2D分子晶体中的位置,并能够研究转子-转子间距和角度对相关旋转开关的影响。通过改变转子本身的功能,我们将探索立体耦合和偶极耦合。最后,手性旋转单元将作为一种通过闪温棘轮机制诱导单向旋转的方式被引入。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards the directional transport of molecules on surfaces
  • DOI:
    10.1016/j.tet.2017.06.032
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Natalie A. Wasio;C. J. Murphy;Dipna A. Patel;Daniel S. Wei;D. Sholl;E. Sykes
  • 通讯作者:
    Natalie A. Wasio;C. J. Murphy;Dipna A. Patel;Daniel S. Wei;D. Sholl;E. Sykes
Hypothetical Efficiency of Electrical to Mechanical Energy Transfer during Individual Stochastic Molecular Switching Events
单个随机分子切换事件期间电能到机械能转移的假设效率
  • DOI:
    10.1021/acsnano.0c04082
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Larson, Amanda M.;Balema, Tedros A.;Zahl, Percy;Schilling, Alex C.;Stacchiola, Dario J.;Sykes, E. Charles
  • 通讯作者:
    Sykes, E. Charles
Chirality at two-dimensional surfaces: A perspective from small molecule alcohol assembly on Au(111)
二维表面的手性:Au(111) 上小分子醇组装的视角
  • DOI:
    10.1063/1.5035500
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liriano, Melissa L.;Larson, Amanda M.;Gattinoni, Chiara;Carrasco, Javier;Baber, Ashleigh E.;Lewis, Emily A.;Murphy, Colin J.;Lawton, Timothy J.;Marcinkowski, Matthew D.;Therrien, Andrew J.
  • 通讯作者:
    Therrien, Andrew J.
Controlling Molecular Switching via Chemical Functionality: Ethyl vs Methoxy Rotors
通过化学官能团控制分子开关:乙基与甲氧基转子
  • DOI:
    10.1021/acs.jpcc.9b06664
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Balema, Tedros A.;Ulumuddin, Nisa;Murphy, Colin J.;Slough, Diana P.;Smith, Zachary C.;Hannagan, Ryan T.;Wasio, Natalie A.;Larson, Amanda M.;Patel, Dipna A.;Groden, Kyle
  • 通讯作者:
    Groden, Kyle
Evidence for biological effects in the radiosensitization of leukemia cell lines by PEGylated gold nanoparticles
  • DOI:
    10.1007/s11051-020-4765-1
  • 发表时间:
    2020-02-15
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Coughlin,Benjamin P.;Lawrence,Paul T.;Mace,Charles R.
  • 通讯作者:
    Mace,Charles R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Sykes其他文献

Charles Sykes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Sykes', 18)}}的其他基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure Sensitive Surface Chemistry - Small Molecule Activation and Spillover
合作研究:结构敏感表面化学-小分子活化和溢出
  • 批准号:
    2102140
  • 财政年份:
    2021
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Structure Sensitive Surface Chemistry - Enantioselectivity on Chiral Surfaces
合作研究:结构敏感表面化学 - 手性表面的对映选择性
  • 批准号:
    1764270
  • 财政年份:
    2018
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
New methods for controlling molecular motion on surfaces
控制表面分子运动的新方法
  • 批准号:
    1412402
  • 财政年份:
    2014
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Collaborative Research: High Throughput Structure Sensitive Surface Chemistry
合作研究:高通量结构敏感表面化学
  • 批准号:
    1012307
  • 财政年份:
    2010
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
CAREER: Investigating and Controlling Molecular Rotation on Surfaces
职业:研究和控制表面分子旋转
  • 批准号:
    0844343
  • 财政年份:
    2009
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Structure and Chemistry of Naturally Chiral Metal Surfaces
合作研究:天然手性金属表面的结构和化学
  • 批准号:
    0717978
  • 财政年份:
    2007
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Research Grant
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
CAREER: Controlling the Deformability of Quantum Dots Solids for Wearable NIR Optoelectronics
职业:控制可穿戴近红外光电器件的量子点固体的变形能力
  • 批准号:
    2337974
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
  • 批准号:
    2327754
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2411677
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Continuing Grant
AerialHitches: Forming and Controlling Hitches for Fully Autonomous Transportation Using Aerial Robots with Cables
空中挂钩:使用带有电缆的空中机器人形成和控制全自动运输的挂钩
  • 批准号:
    2322840
  • 财政年份:
    2024
  • 资助金额:
    $ 44.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了