Controlling the Band Structure of 2D Semiconductors by their Dielectric Environment

通过介电环境控制二维半导体的能带结构

基本信息

  • 批准号:
    1708457
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical description: The field of atomically thin two-dimensional (2D) materials started ten years ago with the discovery of graphene. The range of such materials that are only one or a few atoms thick has now expanded to encompass 2D semiconductors, metals, and insulators. The unique combination of electrical, optical, and mechanical properties of these materials has opened up many new scientific frontiers and led to the development of a variety of nanoscale devices - from transistors to light emitting diodes and sensors. Critical to the further development of the field is the ability to manipulate the way electrons behave in these materials, particularly by controlling their available energy levels. The electronic properties of a material are normally altered by modifying the material itself, for example, by changing the material's chemical composition. This project explores a new approach to controlling the behavior of electrons in 2D materials. Rather than changing the material itself, the energy levels in the 2D material are modified by changing the surrounding media. For 2D materials that are only one or a few atoms thick, the external environment actually modifies the forces acting between electrons within the layer and, hence, changes the available energy levels for electrons. The research examines both uniform and nanostructured environments as a means of developing building blocks for a new class of nanoscale electronic and optical devices. Graduate students and undergraduate interns involved in the project learn to prepare, characterize, and analyze 2D materials and devices. Important professional development activities include frequent presentations of their own research and other technical topics within the group and in departmental forums at Stanford University. Technical description: A critical factor for the development of the field of atomically thin two-dimensional 2D materials is the control of their band gap on the nanoscale. This is essential to explore the fundamental physical properties of the materials and to realize many technological applications, ranging from tuning the photon energy of light emission to the control of the transport characteristics by lateral junctions. Traditional approaches, like alloying, are, however, difficult to implement on the nanoscale. This project takes advantage of the pronounced influence of non-local dielectric screening in the limit of atomically thin materials to tune externally many-body Coulomb interactions in 2D semiconductors. This allows tuning of the band structure and band gap of the 2D material simply by tailoring its dielectric environment. The research involves three distinct components: (1) Systematic assembly of 2D heterostructures with varying band gaps and environmental screening; (2) real-space profiling of the band gap at abrupt discontinuities and study of localization for 0D and 1D structures; and (3) determination of conduction and valence band offsets across dielectrically engineered junctions. Characterization tools for these investigations include optical spectroscopy, electron energy-loss spectroscopy and cathodoluminescence, and scanning tunneling spectroscopy.
非技术描述:原子级薄二维(2D)材料领域始于十年前石墨烯的发现。这种只有一个或几个原子厚的材料的范围现在已经扩展到包括2D半导体,金属和绝缘体。这些材料的电学、光学和机械特性的独特组合开辟了许多新的科学前沿,并导致了各种纳米器件的发展-从晶体管到发光二极管和传感器。对该领域的进一步发展至关重要的是操纵电子在这些材料中的行为方式的能力,特别是通过控制它们的可用能级。材料的电子性质通常通过改变材料本身来改变,例如通过改变材料的化学成分。该项目探索了一种控制2D材料中电子行为的新方法。不是改变材料本身,而是通过改变周围介质来修改2D材料中的能级。对于只有一个或几个原子厚的2D材料,外部环境实际上改变了层内电子之间的作用力,从而改变了电子的可用能级。该研究考察了均匀环境和纳米结构环境,作为开发新型纳米级电子和光学器件构建模块的一种手段。参与该项目的研究生和本科生实习生学习准备,表征和分析2D材料和设备。重要的专业发展活动包括经常在小组内和斯坦福大学的部门论坛上介绍自己的研究和其他技术主题。技术说明:原子级薄的二维材料领域的发展的一个关键因素是在纳米尺度上控制它们的带隙。这对于探索材料的基本物理性质和实现许多技术应用至关重要,从调节光发射的光子能量到通过横向结控制输运特性。然而,传统的方法(例如合金化)很难在纳米尺度上实施。该项目利用非局部介电屏蔽在原子级薄材料的限制下的显著影响,在2D半导体中外部调谐多体库仑相互作用。这允许简单地通过定制其介电环境来调谐2D材料的带结构和带隙。该研究涉及三个不同的组成部分:(1)具有不同带隙和环境屏蔽的2D异质结构的系统组装;(2)突然不连续处的带隙的真实空间轮廓和0 D和1D结构的局部化研究;以及(3)确定介电工程结中的导带和价带偏移。这些研究的表征工具包括光学光谱、电子能量损失光谱、阴极射线发光和扫描隧道光谱。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dielectric disorder in two-dimensional materials
  • DOI:
    10.1038/s41565-019-0520-0
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Raja, Archana;Waldecker, Lutz;Chernikov, Alexey
  • 通讯作者:
    Chernikov, Alexey
Infrared Interlayer Exciton Emission in MoS2/WSe2 Heterostructures
  • DOI:
    10.1103/physrevlett.123.247402
  • 发表时间:
    2019-12-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Karni, Ouri;Barre, Elyse;Heinz, Tony F.
  • 通讯作者:
    Heinz, Tony F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony Heinz其他文献

Tony Heinz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony Heinz', 18)}}的其他基金

Collaborative Research: GOALI: Graphene THz/IR Optics: Fundamentals and Emerging Photonics Applications
合作研究:GOALI:石墨烯太赫兹/红外光学:基础知识和新兴光子学应用
  • 批准号:
    1411107
  • 财政年份:
    2014
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
GOALI: Tailoring the Electronic Structure of Few-Layer Graphene for Electronic and Optoelectronic Applications
GOALI:为电子和光电应用定制少层石墨烯的电子结构
  • 批准号:
    1106225
  • 财政年份:
    2011
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Properties and Synthesis of Atomically Thin Molybdenum Disulfide
合作研究:原子薄二硫化钼的性质与合成
  • 批准号:
    1106172
  • 财政年份:
    2011
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
NIRT/SNB: Combined Optical, Electrical, Mechanical, and Thermal Characterization of Individual Nanotubes
NIRT/SNB:单个纳米管的综合光学、电学、机械和热表征
  • 批准号:
    0507111
  • 财政年份:
    2005
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Probing Far-Infrared Excitations of Surfaces and Thin Films by Optoelectronic Techniques
利用光电技术探测表面和薄膜的远红外激发
  • 批准号:
    9612294
  • 财政年份:
    1996
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant

相似国自然基金

人参结合Band-3蛋白胞质结构域调控蛋白复合物装配调节红细胞形态和功能的分子机制研究
  • 批准号:
    82004074
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CD47和Band3介导的衰老红细胞吞噬机制的单分子定位成像研究
  • 批准号:
    81501432
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Band3蛋白关联的一种新活性蛋白酶的纯化、基因克隆及其特性研究
  • 批准号:
    39970291
  • 批准年份:
    1999
  • 资助金额:
    11.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
Analysis of problem structure and development of evaluation indexes in wind band and chorus club activities
管乐团、合唱团活动中的问题结构分析及评价指标的制定
  • 批准号:
    23K02076
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Band Structure Engineering for Self-Powered Visible Light Driven Photocatalyst
自供电可见光驱动光催化剂的能带结构工程
  • 批准号:
    23KJ1404
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A novel stacked structure of intermediate band cells for higher efficiency
一种新颖的中带电池堆叠结构,可提高效率
  • 批准号:
    22K04211
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realization of a mechanical structure enabling power generation and vibration reduction via band engineering
通过带工程实现可发电和减振的机械结构
  • 批准号:
    21KK0252
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Band Structure Engineering of Triazine Covalent Frameworks toward Water Splitting Electrocatalyst
三嗪共价框架的能带结构工程用于水分解电催化剂
  • 批准号:
    21K14734
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Observation of conduction band structure of organic semiconductor and study of electron-phonon coupling
有机半导体导带结构观察及电子声子耦合研究
  • 批准号:
    21H01902
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optical Properties and Band Structure of Au-Hyperdoped Ge
Au超掺杂Ge的光学性质和能带结构
  • 批准号:
    565481-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigating the topology of the electronic structure in flat-band systems
研究平带系统中电子结构的拓扑
  • 批准号:
    564896-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Band-filling control of topological semimetals having a 2D square lattice structure
具有二维方晶格结构的拓扑半金属的能带填充控制
  • 批准号:
    21K03472
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了