Controlling Magnetism, Metal-Insulator Transitions, and Superconductivity in Ruthenate Thin Films

控制钌酸盐薄膜中的磁性、金属-绝缘体转变和超导性

基本信息

  • 批准号:
    1709255
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract: The electronic and magnetic properties of materials form the backbone of modern technologies, including computer processors, telecommunications, information storage, and displays. Moreover, the ability to deterministically control these properties, for instance, in semiconductor transistors, is one of the crowning achievements of materials physics in the past fifty years and has had enormous societal and economic impacts. However, the end of Moore's Law and the increasing need for smaller, faster, and more power efficient electronics demands the search for new electronic materials that can ultimately replace existing materials such as silicon and copper which have been in use for nearly half a century. This project aims to investigate one class of electronic materials comprised of ruthenium oxides which exhibit a tremendous variety of electronic and magnetic properties, some of which could be potentially important for a wide range of applications including quantum computing, non-volatile memories, and sensing. These materials are synthesized as thin films which are only a few atoms thick, and their properties are manipulated by controlling the thickness of the film or stretching the bonds between atoms. Advanced spectroscopic tools allow for a more detailed understanding of how to better optimize and control their desired properties. Finally, this project provides crucial training to young scientists in materials synthesis and characterization, and the samples fabricated in these studies support a number of scientific collaborations both nationwide and internationally.Technical Abstract: A major challenge in condensed matter physics is to control the many-body interactions in correlated quantum materials with the objective of being able to engineer their properties in a deterministic fashion. The potential for quantum materials as platforms for future technologies such as topological quantum computation or memories has motivated an effort to discover new avenues to measure and manipulate their electronic and magnetic structure. The strategy outlined in this proposal is to use the family of layered ruthenates which exhibit a range of emergent electronic and magnetic phenomena, including spin-triplet superconductivity, electronic nematicity, quantum criticality, and metal-insulator transitions, as a platform for manipulating electronic and magnetic properties through epitaxial strain, particularly since the properties of ruthenates are particularly responsive to small perturbations. This project combines oxide molecular beam epitaxy growth and in situ high-resolution angle-resolved photoemission to investigate the electronic structure of the ruthenates, and how the band structure and Fermi surfaces responds to strain. Graduate students involved in this project are trained in molecular beam epitaxy growth, photoemission spectroscopy, and a multitude of sample characterization techniques. Some specific objectives of this work include increasing the superconducting Tc of Sr2RuO4 via epitaxial strain, and gaining insight into the mechanism of spin-triplet superconductivity by correlating Tc with changes in the Fermi surface topology. Another goal is to control the magnetic field driven quantum phase transition in Sr3Ru2O7 by changing the RuO6 octahedral rotation angles through epitaxial strain, and correlating these behaviors with changes in the electronic structure.
非技术摘要:材料的电子和磁性构成了现代技术的支柱,包括计算机处理器,电信,信息存储和显示。此外,确定性地控制这些特性的能力,例如,在半导体晶体管中,是过去五十年来材料物理学的最高成就之一,并产生了巨大的社会和经济影响。然而,摩尔定律的终结以及对更小、更快和更功率有效的电子器件的日益增长的需求要求寻找新的电子材料,其可以最终取代已经使用了近半个世纪的现有材料,例如硅和铜。该项目旨在研究一类由钌氧化物组成的电子材料,这些材料具有各种各样的电子和磁性,其中一些可能对量子计算,非易失性存储器和传感等广泛的应用具有潜在的重要性。这些材料被合成为只有几个原子厚的薄膜,它们的性质通过控制薄膜的厚度或拉伸原子之间的键来控制。先进的光谱工具可以更详细地了解如何更好地优化和控制其所需的特性。最后,该项目为年轻科学家提供了材料合成和表征方面的重要培训,这些研究中制造的样品支持了全国和国际上的许多科学合作。技术摘要:凝聚态物理学的一个主要挑战是控制相关量子材料中的多体相互作用,目的是能够以确定性的方式设计它们的属性。量子材料作为拓扑量子计算或存储器等未来技术平台的潜力促使人们努力探索测量和操纵其电子和磁性结构的新途径。在这个提议中概述的策略是使用层状的双烯酸盐家族,其表现出一系列涌现的电子和磁性现象,包括自旋三重态超导性、电子向列性、量子临界性和金属-绝缘体转变,作为通过外延应变操纵电子和磁性的平台,特别是因为双烯酸盐的性质对小扰动特别敏感。该项目结合氧化物分子束外延生长和原位高分辨率角分辨光电子能谱来研究双烯酸盐的电子结构,以及能带结构和费米表面对应变的响应。参与这个项目的研究生在分子束外延生长,光电子能谱,和大量的样品表征技术的培训。这项工作的一些具体目标包括通过外延应变增加Sr 2 RuO 4的超导Tc,并通过将Tc与费米表面拓扑结构的变化相关联来深入了解自旋三重态超导性的机制。另一个目标是控制磁场驱动的量子相变Sr 3Ru 2 O 7通过改变RuO 6八面体的旋转角度,通过外延应变,并将这些行为与电子结构的变化。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing the hidden heavy Fermi liquid in CaRuO3
揭示 CaRuO3 中隐藏的重费米液体
  • DOI:
    10.1103/physrevb.98.041110
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu Yang;Nair Hari P.;Ruf Jacob P.;Schlom Darrell G.;Shen Kyle M.
  • 通讯作者:
    Shen Kyle M.
Quantum oscillations and quasiparticle properties of thin film Sr2RuO4
  • DOI:
    10.1103/physrevb.104.045152
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yawen Fang;H. Nair;L. Miao;B. Goodge;N. Schreiber;J. Ruf;L. Kourkoutis;K. Shen;D. Schlom;B. Ramshaw
  • 通讯作者:
    Yawen Fang;H. Nair;L. Miao;B. Goodge;N. Schreiber;J. Ruf;L. Kourkoutis;K. Shen;D. Schlom;B. Ramshaw
Strain relaxation induced transverse resistivity anomalies in SrRuO3 thin films
  • DOI:
    10.1103/physrevb.102.064406
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    L. Miao;N. Schreiber;H. Nair;B. Goodge;Shengwei Jiang;J. Ruf;Yonghun Lee;Matthew Fu;B. Tsang;Yingfei Li;C. Zeledon;J. Shan;K. Mak;L. Kourkoutis;D. Schlom;K. Shen
  • 通讯作者:
    L. Miao;N. Schreiber;H. Nair;B. Goodge;Shengwei Jiang;J. Ruf;Yonghun Lee;Matthew Fu;B. Tsang;Yingfei Li;C. Zeledon;J. Shan;K. Mak;L. Kourkoutis;D. Schlom;K. Shen
Two-dimensional magnetic monopole gas in an oxide heterostructure
  • DOI:
    10.1038/s41467-020-15213-z
  • 发表时间:
    2020-03-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Miao, L.;Lee, Y.;Shen, K. M.
  • 通讯作者:
    Shen, K. M.
Subterahertz Momentum Drag and Violation of Matthiessen’s Rule in an Ultraclean Ferromagnetic SrRuO3 Metallic Thin Film
超净铁磁 SrRuO3 金属薄膜中的亚太赫兹动量阻力和违反马蒂森规则
  • DOI:
    10.1103/physrevlett.125.217401
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wang, Youcheng;Bossé, G.;Nair, H. P.;Schreiber, N. J.;Ruf, J. P.;Cheng, B.;Adamo, C.;Shai, D. E.;Lubashevsky, Y.;Schlom, D. G.
  • 通讯作者:
    Schlom, D. G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Shen其他文献

Angle-resolved photoemission studies of lattice polaron formation in the cuprateCa2CuO2Cl2
铜酸盐Ca2CuO2Cl2 中晶格极化子形成的角分辨光发射研究
  • DOI:
    10.1103/physrevb.75.075115
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kyle Shen;Kyle Shen;F. Ronning;W. Meevasana;D. Lu;N. Ingle;N. Ingle;F. Baumberger;Wei;L. L. Miller;Y. Kohsaka;M. Azuma;M. Takano;H. Takagi;Z. Shen
  • 通讯作者:
    Z. Shen

Kyle Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Shen', 18)}}的其他基金

Synthesis and Spectroscopy of Thin Film Nickelate Superconductors
薄膜镍酸盐超导体的合成与光谱学
  • 批准号:
    2104427
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Convergence QL: NSF/DOE Quantum Science Summer School
Convergence QL:NSF/DOE 量子科学暑期学校
  • 批准号:
    1743072
  • 财政年份:
    2017
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAREER: Photoemission Spectroscopy of Thin Films : A New Laboratory for Studying Quantum Many-Body Interactions
职业:薄膜光电发射光谱:研究量子多体相互作用的新实验室
  • 批准号:
    0847385
  • 财政年份:
    2009
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似海外基金

Spin-orbit coupling and dimensionality at the heart of quantum magnetism of heavy transition metal oxides
重过渡金属氧化物量子磁性核心的自旋轨道耦合和维数
  • 批准号:
    EP/W00562X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Research Grant
CAREER: Magnetism and Spintronics in Quasi-two-dimensional Magnetic Hybrid Metal Halides: From Bulk to 2D limit
职业:准二维磁性混合金属卤化物中的磁学和自旋电子学:从块体到二维极限
  • 批准号:
    2143642
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Magnetism of surface-terminations in transition metal doped Co3O4 nanoshapes
过渡金属掺杂 Co3O4 纳米形状表面终止的磁性
  • 批准号:
    560149-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Magnetism of surface-terminations in transition metal doped Co3O4 nanoshapes
过渡金属掺杂 Co3O4 纳米形状表面终止的磁性
  • 批准号:
    560149-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Intelligent polishing technology by using low rigidity robot and magnetism for metal additive manufactured mold
金属增材制造模具低刚性机器人与磁性智能抛光技术
  • 批准号:
    20K14624
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Plasmon Enhanced Optical Magnetism in Metal Nanostructures
金属纳米结构中的等离子增强光磁
  • 批准号:
    2004810
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
RII-Track 4: Investigation into Structure-Magnetism Correlations in 4d/5d Transition Metal Halides using Combined X-ray and Neutron Diffraction Techniques
RII-Track 4:使用 X 射线和中子衍射组合技术研究 4d/5d 过渡金属卤化物中的结构-磁性相关性
  • 批准号:
    1832967
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAREER: Confining Magnetism to Two-Dimensions in Transition Metal Oxide Atomic Layers
职业:将磁性限制在过渡金属氧化物原子层的二维范围内
  • 批准号:
    1751455
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Effect of hydride bonding state on magnetism and conductivity in transition metal hydrides
过渡金属氢化物中氢键状态对磁性和电导率的影响
  • 批准号:
    16K17759
  • 财政年份:
    2016
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
RUI: Novel Heavy Element Transition Metal Oxides; Low Dimensional Magnetism vs. Geometric Magnetic Frustration
RUI:新型重元素过渡金属氧化物;
  • 批准号:
    1601811
  • 财政年份:
    2016
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了