Deformation, Strength, Fatigue and Fracture of Gradient Nanostructured Metals

梯度纳米结构金属的变形、强度、疲劳和断裂

基本信息

  • 批准号:
    1709318
  • 负责人:
  • 金额:
    $ 47.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:Metals play essential roles in infrastructural and overall economic developments of our society, as reflected by the fact that the annual global market value of metals is close to a trillion US dollars. During the last five years, a new class of nano materials called gradient nanostructured metals have emerged as a material class which exhibits an unusual combination of ultrahigh strength, good tensile ductility, enhanced strain hardening, superior fracture toughness and fatigue resistance. However, the current lack of understanding of the underlying mechanisms that control the properties of these materials severely limits our ability to tailor or optimize their properties for specific applications. On the other hand, recent advances in computational modeling and simulation capabilities are providing unprecedented opportunities to advance the knowledge frontier in our understanding of mechanical properties of materials at micro- and nano-scales. The proposed research will take advantage of the cutting-edge multiscale modeling and simulation methods to address the fundamental issues with regard to the mechanical properties and behavior of gradient nanostructured metals. The project will train graduate and undergraduate students in state of the art computational techniques. Technical AbstractThe proposed research will address the following questions: What are the deformation mechanisms that control the mechanical properties of gradient nanostructured metals? How to design the gradient micro- and nanostructures to optimize the mechanical responses of gradient nanostructured metals? The problems under study will be tackled via a multiscale modeling approach that combines finite element method, strain gradient plasticity, cohesive modeling, crystal plasticity, dislocation dynamics and molecular dynamics simulations will be used to investigate the deformation and failure mechanisms of gradient nanostructured metals. The technical approach will be based on the experience and theoretical/simulation capabilities developed by the PI. The proposed work will clarify the controlling deformation mechanisms through ultra-large-scale and high-resolution atomistic and dislocation dynamics simulations, interpret the experimental data and phenomena through continuum strain gradient plasticity and cohesive modeling of fatigue and fracture behavior, and guide further research in structural optimization and processing. The ultra-large scale simulations in the proposed work will be performed on the National Institute for Computational Sciences, and the rest of the proposed computational work will be performed at the Center for Computing and Visualization at Brown University. The project will train graduate and undergraduate students in state of the art computational techniques.
摘要:金属在我们社会的基础设施和整体经济发展中发挥着至关重要的作用,这反映在每年全球金属市场价值接近一万亿美元这一事实上。在过去的五年中,一种被称为梯度纳米结构金属的新型纳米材料已经出现,这种材料具有超高强度、良好的拉伸延展性、增强的应变硬化、优异的断裂韧性和抗疲劳性。然而,目前对控制这些材料性能的潜在机制缺乏了解,严重限制了我们为特定应用量身定制或优化其性能的能力。另一方面,计算建模和模拟能力的最新进展为我们在微观和纳米尺度上对材料力学性能的理解提供了前所未有的机会。本研究将利用尖端的多尺度建模和仿真方法来解决有关梯度纳米结构金属的力学性能和行为的基本问题。该项目将培养研究生和本科生掌握最先进的计算技术。技术摘要:本研究将解决以下问题:控制梯度纳米结构金属力学性能的变形机制是什么?如何设计梯度微纳米结构以优化梯度纳米结构金属的力学响应?本文将采用多尺度建模方法,结合有限元法、应变梯度塑性、内聚模型、晶体塑性、位错动力学和分子动力学模拟,研究梯度纳米结构金属的变形和破坏机制。技术方法将以PI开发的经验和理论/模拟能力为基础。通过超大尺度、高分辨率的原子和位错动力学模拟来阐明控制变形机制,通过连续应变梯度塑性和疲劳断裂行为的内聚建模来解释实验数据和现象,并指导进一步的结构优化和加工研究。所提议工作中的超大规模模拟将在美国国家计算科学研究所进行,其余的计算工作将在布朗大学计算与可视化中心进行。该项目将培养研究生和本科生掌握最先进的计算技术。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competition between shear localization and tensile detwinning in twinned nanowires
  • DOI:
    10.1103/physrevmaterials.4.023603
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Sheng Yin;G. Cheng;Yong Zhu;Huajian Gao
  • 通讯作者:
    Sheng Yin;G. Cheng;Yong Zhu;Huajian Gao
Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties
  • DOI:
    10.1016/j.mattod.2017.10.001
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    24.2
  • 作者:
    Sha, Z. D.;She, C. M.;Gao, H. J.
  • 通讯作者:
    Gao, H. J.
Hydrogen embrittlement in metallic nanowires
  • DOI:
    10.1038/s41467-019-10035-0
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Atomistic simulations of superplasticity and amorphization of nanocrystalline anatase TiO2
  • DOI:
    10.1016/j.eml.2018.05.009
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xuan Zhang;Huajian Gao;Xiaoyan Li
  • 通讯作者:
    Xuan Zhang;Huajian Gao;Xiaoyan Li
Dynamic recrystallization-induced temperature insensitivity of yield stress in single-crystal Al1.2CrFeCoNi micropillars
  • DOI:
    10.1007/s11431-020-1660-8
  • 发表时间:
    2020-07-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Huang RuiRui;Zhang Qian;Li XiaoYan
  • 通讯作者:
    Li XiaoYan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huajian Gao其他文献

Elastic properties of nanocomposite structure of bone
骨纳米复合结构的弹性性能
  • DOI:
    10.1016/j.compscitech.2005.10.017
  • 发表时间:
    2006-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baohua Ji;Huajian Gao
  • 通讯作者:
    Huajian Gao
Strengthening brittle semiconductor nanowires through stacking faults: from in situ mechanical testing
通过堆垛层错强化脆性半导体纳米线:来自原位机械测试
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Jin Zhou;Simon P. Ringer;Huajian Gao;Chennupati Jagadish
  • 通讯作者:
    Chennupati Jagadish
Optimized Bearing and Interlay
优化的轴承和间隙
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wanlin Guo;Huajian Gao
  • 通讯作者:
    Huajian Gao
Variation of elastic T-stresses along slightly wavy 3D crack fronts
A boundary perturbation analysis for elastic inclusions and interfaces

Huajian Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huajian Gao', 18)}}的其他基金

Topological Design of Tough Multi-functional 2D Materials
坚韧多功能二维材料的拓扑设计
  • 批准号:
    1634492
  • 财政年份:
    2016
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
Multiscale Mechanics of Cell Interactions With Flexible Nanofilaments
细胞与柔性纳米丝相互作用的多尺度力学
  • 批准号:
    1562904
  • 财政年份:
    2016
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
Size Effects, Deformation, Strength and Fracture of Nanotwinned Metals
纳米孪晶金属的尺寸效应、变形、强度和断裂
  • 批准号:
    1161749
  • 财政年份:
    2012
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
Workshop: New Frontiers of Solid Mechanics-from Earthquakes to Single Molecules; Providence, Rhode Island; June 1-3, 2011
研讨会:固体力学新领域——从地震到单分子;
  • 批准号:
    1102432
  • 财政年份:
    2011
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
Effects of Elasticity and Geometry on Cellular Uptake of Nanoparticles
弹性和几何形状对纳米颗粒细胞摄取的影响
  • 批准号:
    1028530
  • 财政年份:
    2010
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
Competing Grain-Interior and Grain-Boundary Deformation Mechanisms in Nanocrystalline Materials and Thin Films
纳米晶材料和薄膜中的竞争性晶粒内部和晶界变形机制
  • 批准号:
    0758535
  • 财政年份:
    2008
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Continuing Grant
The 8th International Conference on Fundamentals of Fracture (ICFF VIII), held at the Hong Kong University, Hong Kong and Guangzhou, January 3-7, 2008
第八届骨折基础国际会议(ICFF VIII),于2008年1月3-7日在香港和广州的香港大学举行
  • 批准号:
    0722865
  • 财政年份:
    2007
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
MRSEC: Micro- and Nano- Mechanics of Materials
MRSEC:材料的微观和纳米力学
  • 批准号:
    0520651
  • 财政年份:
    2005
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Cooperative Agreement
Computational Nano-Engineering for Patterned Magnetic Nanostructures
图案化磁性纳米结构的计算纳米工程
  • 批准号:
    0085569
  • 财政年份:
    2000
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Continuing Grant
LCE: Computational Methods for Mechanism-Based Higher-Order Continuum Theories
LCE:基于机制的高阶连续体理论的计算方法
  • 批准号:
    9979717
  • 财政年份:
    1999
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Continuing Grant
Design of high fatigue strength ferrite-martensite steel based on microstructural control and strengthening mechanisms
基于显微组织控制和强化机制的高疲劳强度铁素体-马氏体钢设计
  • 批准号:
    22KJ1400
  • 财政年份:
    2023
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Temporal and Spatial Concentration of Energy Using Solid-Gas-Liquid Mixed Phases and Development to Improve Fatigue Strength of 3D Metals
利用固-气-液混合相进行能量的时空集中以及提高3D金属疲劳强度的开发
  • 批准号:
    23H01292
  • 财政年份:
    2023
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Vildation of Evaluating Fatigue Strength of Carbon Fiber Reinforced Plastic Laminates by Using Ulatrasonic Fatigue Testing Methd
超声疲劳试验方法评价碳纤维增强塑料层压板疲劳强度的验证
  • 批准号:
    23K03572
  • 财政年份:
    2023
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a method for improving fatigue strength of high-strength steel by laser peening
激光喷丸提高高强钢疲劳强度方法的研制
  • 批准号:
    23KJ2111
  • 财政年份:
    2023
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Fused Filament Fabrication of Porous PEEK and PEKK Spinal Cages: Which 3D Printing Conditions Control Static and Fatigue Strength?
多孔 PEEK 和 PEKK 脊柱笼的熔丝制造:哪种 3D 打印条件可以控制静电强度和疲劳强度?
  • 批准号:
    2326537
  • 财政年份:
    2023
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Standard Grant
Evaluation of fatigue strength of adhesively bonded joints considering stress ratio
考虑应力比的粘接接头疲劳强度评估
  • 批准号:
    22K14314
  • 财政年份:
    2022
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation of bulk material property changes and fatigue strength determination of relaxor-PT piezoelectric materials
弛豫-PT压电材料块体材料性能变化研究及疲劳强度测定
  • 批准号:
    RGPIN-2015-05791
  • 财政年份:
    2022
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Discovery Grants Program - Individual
Improved fatigue strength of high-strength steels fabricated by additive manufacturing in the very high cycle regime
通过增材制造在极高循环状态下提高高强度钢的疲劳强度
  • 批准号:
    22H01356
  • 财政年份:
    2022
  • 资助金额:
    $ 47.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了