Topological Design of Tough Multi-functional 2D Materials

坚韧多功能二维材料的拓扑设计

基本信息

  • 批准号:
    1634492
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

This award supports the development of methods to tailor the mechanical and physical properties of two-dimensional (2D) materials through topological design. 2D materials are crystalline materials consisting of a single layer of atoms. These materials come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, water purification and biomedicine. While each of these promising applications emphasizes a different aspect of 2D materials, they all require structural reliability and resistance to failure of the materials. Recently, it has become clear that, while 2D materials can achieve ultra-high strength with nearly perfect atomic structures, they are typically very fragile against fracture. This is an important concern as large scale fabrication will inevitably introduce cracks in 2D materials. The intrinsically brittle nature, inevitable cracks and corrosive environment make fracture one of the most prominent concerns in industrial applications of 2D materials. Results from this research will benefit the U.S. economy and society, as the global market for 2D materials is expected to approach billions of dollars in the coming decades. The multi-disciplinary approach of the research will positively impact engineering education and outreach activities at Brown University.The research will address the following two questions: To what extent can the toughness of 2D materials be enhanced through topological design? What thermal-mechanical-electrical properties could the topologically toughened 2D materials hope to achieve? The problems under study will be tackled via a multi-scale approach based on phase field crystal method, atomistic simulations, DFT calculations and continuum theories. The technical approach will be based on the experience and theoretical/simulation capabilities developed by the PI. The work will include the development of a general methodology for topological design of 2D materials and investigation of mechanical properties such as stretching, bending, wrinkling, tearing, fracture, penetration, as well as thermal and electrical properties of designed structures via atomistic simulation, DFT calculation, and continuum modeling/simulations. Design phase diagrams with targeted properties will be developed to inspire experimental synthesis. The ultra-large scale simulations in the work will be performed on the National Institute for Computational Sciences, and the rest of the computational work will be performed at the Center for Computing and Visualization at Brown University.
该奖项支持开发通过拓扑设计来量身定制二维(2D)材料的机械和物理性质的方法。 2D材料是由单层原子组成的结晶材料。这些材料具有多种化学成分,晶体相和物理形式,并有望在包括电子,传感器,涂料,屏障,能源储能和转换,水纯化和生物医学的区域中实现许多未来的技术。尽管这些有希望的应用都强调了2D材料的不同方面,但它们都需要结构可靠性和抵抗材料故障。最近,很明显,尽管2D材料可以通过几乎完美的原子结构实现超高强度,但它们通常非常脆弱。这是一个重要的问题,因为大规模制造将不可避免地引入2D材料中的裂缝。本质上脆弱的性质,不可避免的裂缝和腐蚀性环境使骨折成为2D材料工业应用中最突出的关注之一。这项研究的结果将使美国经济和社会受益,因为预计在未来几十年中,2D材料的全球市场将接近数十亿美元。研究的多学科方法将对布朗大学的工程教育和外展活动产生积极影响。研究将解决以下两个问题:通过拓扑设计可以在多大程度上增强2D材料的韧性?拓扑结实的2D材料希望实现哪些热机械电动特性? 研究的问题将通过基于相位晶体方法,原子模拟,DFT计算和连续理论的多尺度方法来解决。技术方法将基于PI开发的经验和理论/仿真功能。这项工作将包括开发2D材料拓扑设计的一般方法,并研究机械性能,例如伸展,弯曲,皱纹,撕裂,断裂,穿透性,以及通过原子学模拟,DFT计算以及连续模型/模拟/模拟/模拟/模拟的设计结构的热和电气性能。将开发具有目标特性的设计相图以激发实验合成。工作中的超大量表模拟将在美国国家计算科学研究所进行,其余的计算工作将在布朗大学的计算与可视化中心进行。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harness the Power of Fracture: Controlled Fragmentation of Graphene via Substrate Necking
  • DOI:
    10.1016/j.matt.2020.02.007
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Bo Ni;Huajian Gao
  • 通讯作者:
    Bo Ni;Huajian Gao
Phase field crystal modeling of grain boundary structures and growth in polycrystalline graphene
Mechanical properties characterization of two-dimensional materials via nanoindentation experiments
  • DOI:
    10.1016/j.pmatsci.2019.03.002
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    37.4
  • 作者:
    Cao, Guoxin;Gao, Huajian
  • 通讯作者:
    Gao, Huajian
Engineer Energy Dissipation in 3D Graphene Nanolattice Via Reversible Snap-Through Instability
  • DOI:
    10.1115/1.4045544
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Ni;Huajian Gao
  • 通讯作者:
    Bo Ni;Huajian Gao
Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization
  • DOI:
    10.1007/s12274-017-1600-9
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Yingyan Zhang;Q. Pei;Z. Sha;Yongwei Zhang;Huajian Gao
  • 通讯作者:
    Yingyan Zhang;Q. Pei;Z. Sha;Yongwei Zhang;Huajian Gao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huajian Gao其他文献

Optimized Bearing and Interlay
优化的轴承和间隙
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wanlin Guo;Huajian Gao
  • 通讯作者:
    Huajian Gao
Strengthening brittle semiconductor nanowires through stacking faults: from in situ mechanical testing
通过堆垛层错强化脆性半导体纳米线:来自原位机械测试
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Jin Zhou;Simon P. Ringer;Huajian Gao;Chennupati Jagadish
  • 通讯作者:
    Chennupati Jagadish
Variation of elastic T-stresses along slightly wavy 3D crack fronts
Elastic properties of nanocomposite structure of bone
骨纳米复合结构的弹性性能
  • DOI:
    10.1016/j.compscitech.2005.10.017
  • 发表时间:
    2006-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baohua Ji;Huajian Gao
  • 通讯作者:
    Huajian Gao
A boundary perturbation analysis for elastic inclusions and interfaces

Huajian Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huajian Gao', 18)}}的其他基金

Deformation, Strength, Fatigue and Fracture of Gradient Nanostructured Metals
梯度纳米结构金属的变形、强度、疲劳和断裂
  • 批准号:
    1709318
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Multiscale Mechanics of Cell Interactions With Flexible Nanofilaments
细胞与柔性纳米丝相互作用的多尺度力学
  • 批准号:
    1562904
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Size Effects, Deformation, Strength and Fracture of Nanotwinned Metals
纳米孪晶金属的尺寸效应、变形、强度和断裂
  • 批准号:
    1161749
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Workshop: New Frontiers of Solid Mechanics-from Earthquakes to Single Molecules; Providence, Rhode Island; June 1-3, 2011
研讨会:固体力学新领域——从地震到单分子;
  • 批准号:
    1102432
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Effects of Elasticity and Geometry on Cellular Uptake of Nanoparticles
弹性和几何形状对纳米颗粒细胞摄取的影响
  • 批准号:
    1028530
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Competing Grain-Interior and Grain-Boundary Deformation Mechanisms in Nanocrystalline Materials and Thin Films
纳米晶材料和薄膜中的竞争性晶粒内部和晶界变形机制
  • 批准号:
    0758535
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
The 8th International Conference on Fundamentals of Fracture (ICFF VIII), held at the Hong Kong University, Hong Kong and Guangzhou, January 3-7, 2008
第八届骨折基础国际会议(ICFF VIII),于2008年1月3-7日在香港和广州的香港大学举行
  • 批准号:
    0722865
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
MRSEC: Micro- and Nano- Mechanics of Materials
MRSEC:材料的微观和纳米力学
  • 批准号:
    0520651
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Cooperative Agreement
Computational Nano-Engineering for Patterned Magnetic Nanostructures
图案化磁性纳米结构的计算纳米工程
  • 批准号:
    0085569
  • 财政年份:
    2000
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
LCE: Computational Methods for Mechanism-Based Higher-Order Continuum Theories
LCE:基于机制的高阶连续体理论的计算方法
  • 批准号:
    9979717
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
  • 批准号:
    82302400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于介孔结构固态纳米孔器件的设计制备及单分子检测
  • 批准号:
    22305041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
  • 批准号:
    52375212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于人车双向感知的驾驶人状态调节策略设计与优化
  • 批准号:
    72301151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics
职业:坚韧的建筑混凝土材料:仿生设计、制造和力学
  • 批准号:
    2238992
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Solar2Wave: Design of Floating Solar Farms to Overcome Tough Ocean Waves
Solar2Wave:克服汹涌海浪的浮动太阳能发电场设计
  • 批准号:
    10048187
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Feasibility Studies
Mechanistic Design and Understanding of Fully Polymeric Antifreezing and Tough Hydrogels
全聚合防冻剂和坚韧水凝胶的机理设计和理解
  • 批准号:
    2311985
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
  • 批准号:
    10666626
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
  • 批准号:
    10495364
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了