Arithmetic of Function Fields
函数域的算术
基本信息
- 批准号:1709350
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A conference on "Arithmetic of Function Fields" will take place June 26-30, 2017, at the University of Muenster, Germany. The purpose of this conference is to bring together international experts in a variety of areas of arithmetic geometry, automorphic forms, and function field arithmetic. The emphasis of the conference will be on recent spectacular developments in the theory of Drinfeld moduli spaces, Drinfeld modular forms, and their applications. It is hoped that having at the same place and time a large number of researchers with different viewpoints on function field arithmetic will illuminate previously unnoticed connections within the area, thus facilitating future progress. The organizers of the conference will make a strong effort to ensure an active participation of a large number of junior researchers and underrepresented groups. Since their emergence in 1970s, Drinfeld moduli spaces had a tremendous impact on the Langlands program leading to a successful resolution of the global and local Langlands conjectures over function fields. Over the last few years, there has been an explosion of activity in function field arithmetic, with many spectacular results on special values of higher derivatives of L-functions of automorphic forms, special values of Carlitz-Goss L-functions, and Drinfeld modular forms. Moreover, new tantalizing connections have been discovered between different topics of function field arithmetic, such as special values of characteristic p zeta functions, deformations of Drinfeld modular forms, and function field analogue of Fontaine's theory. In many of these works, Drinfeld moduli spaces play a prominent role. These developments, along with possible future directions of research, will be addressed by the invited speakers of this conference with the hope to inspire new generations to take part in this important and very active area of Number Theory. Conference website: http://wwwmath.uni-muenster.de/sfb878/activities/AFF_announce.html
关于“函数场的算术”的会议将于2017年6月26日至30日在德国的明斯特大学举行。这次会议的目的是汇集国际专家在各种领域的算术几何,自守形式,和功能领域的算术。 会议的重点将是在德林费尔德模空间理论,德林费尔德模形式及其应用的最新壮观的发展。人们希望在同一地点和同一时间有大量的研究人员与不同的观点对函数域算术将照亮以前未被注意的连接内的领域,从而促进未来的进展。会议的组织者将作出巨大努力,确保大量初级研究人员和代表性不足的群体积极参与。自20世纪70年代出现以来,Drinfeld模空间对朗兰兹纲领产生了巨大的影响,导致了函数场上的整体和局部朗兰兹纲领的成功解决。在过去的几年里,函数域算术的活动激增,在自守形式的L-函数的高阶导数的特殊值、Carlitz-Goss L-函数的特殊值和Drinfeld模形式上有许多惊人的结果。此外,新的诱人的连接已被发现之间的不同主题的功能领域的算术,如特殊值的特征p zeta功能,变形的德林费尔德模形式,和功能领域的模拟方丹的理论。在许多这些作品中,德林费尔德模空间发挥了突出的作用。这些发展,沿着未来可能的研究方向,将由本次会议的特邀演讲者讨论,希望激励新一代人参与数论这一重要而非常活跃的领域。会议网址:http://wwwmath.uni-muenster.de/sfb878/activities/AFF_announce.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihran Papikian其他文献
Endomorphisms of exceptional $${\mathcal{D}}$$ -elliptic sheaves
- DOI:
10.1007/s00209-009-0576-x - 发表时间:
2009-07-28 - 期刊:
- 影响因子:1.000
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
Computing endomorphism rings and Frobenius matrices of Drinfeld modules
- DOI:
10.1016/j.jnt.2019.11.018 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Sumita Garai;Mihran Papikian - 通讯作者:
Mihran Papikian
On eigenvalues of p-adic curvature
- DOI:
10.1007/s00229-008-0216-5 - 发表时间:
2008-09-24 - 期刊:
- 影响因子:0.600
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
On component groups of Jacobians of quaternionic modular curves
- DOI:
10.1007/s00013-016-0927-x - 发表时间:
2016-09-28 - 期刊:
- 影响因子:0.500
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
On Garland’s vanishing theorem for $$\mathrm {SL}_n$$
- DOI:
10.1007/s40879-016-0100-x - 发表时间:
2016-03-15 - 期刊:
- 影响因子:0.500
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
Mihran Papikian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihran Papikian', 18)}}的其他基金
Modular Varieties Over Function Fields and Arithmetic Applications
函数域和算术应用的模块化品种
- 批准号:
0801208 - 财政年份:2008
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似国自然基金
原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
- 批准号:31872221
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Arithmetic and reduction of one-dimensional and higher-dimensional Abelian varieties over function fields
函数域上一维和高维阿贝尔簇的算术和约简
- 批准号:
442615504 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Research Fellowships
Arithmetic of Function Fields and Diophantine Geometry
函数域算术和丢番图几何
- 批准号:
1902042 - 财政年份:2019
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2019
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2016
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Properties of Function Fields
函数域的算术性质
- 批准号:
RGPIN-2015-03709 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Elliptic Curves and Abelian Varieties over Function Fields
函数域上的椭圆曲线和阿贝尔簇的算术
- 批准号:
EP/J005290/1 - 财政年份:2012
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant
Travel support for a CRM Research Program in Arithmetic Geometry of function fields of positive characteristic
正特征函数域算术几何 CRM 研究项目的差旅支持
- 批准号:
0968709 - 财政年份:2010
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Modular Varieties Over Function Fields and Arithmetic Applications
函数域和算术应用的模块化品种
- 批准号:
0801208 - 财政年份:2008
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant