Modular Varieties Over Function Fields and Arithmetic Applications
函数域和算术应用的模块化品种
基本信息
- 批准号:0801208
- 负责人:
- 金额:$ 11.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project has two main objectives. The first objective is to study the asymptotic behavior of the cohomology groups of modular varieties and of the number of rational points on such varieties over finite fields as the level varies. It will establish a rather important property of modular varieties, namely that the modular varieties over appropriately chosen finite fields provide examples of varieties with many rational points compared to their Betti numbers. This will shed some light on a difficult and largely open question of the optimality of the Weil-Deligne bound on the number of rational points on varieties over finite fields. This result might also find applications in coding theory. The second objective is to develop arithmetic tools for the study of modular curves over function fields and to use the parametrizations by modular curves to study non-isotrivial elliptic curves over function fields.Modular varieties introduced by Shimura and their function field counterparts introduced by Drinfeld play an absolutely central role in current algebraic number theory. One of the main applications of these varieties is to the Langlands conjectures, since the cohomology groups of these varieties provide a link between Galois and automorphic representations. The project builds on and extends the results obtained by the PI earlier. The methods which will be employed come from the ideas in the proofs of the Langlands conjectures over function fields, rigid-analytic geometry and representation theory over local fields.
该项目有两个主要目标。第一个目的是研究有限域上模簇的上同调群以及模簇上有理点个数随水平变化的渐近性态。它将建立模簇的一个相当重要的性质,即适当选择的有限域上的模簇提供了与它们的贝蒂数相比具有许多有理点的簇的例子。这将揭示一些困难的,很大程度上是开放的问题的最优性的韦尔-德利涅界的数量合理的点品种在有限领域。这一结果也可能在编码理论中找到应用。第二个目标是为研究函数域上的模曲线开发计算工具,并利用模曲线的参数化来研究函数域上的非等平凡椭圆曲线。由Shimura引入的模簇和由Drinfeld引入的函数域上的模簇在当前代数数论中起着绝对的核心作用。这些变种的主要应用之一是朗兰兹图,因为这些变种的上同调群提供了伽罗瓦和自守表示之间的联系。该项目建立在PI先前获得的结果的基础上并扩展了这些结果。将采用的方法来自的想法证明朗兰兹定理的功能领域,刚性解析几何和表示理论的地方领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mihran Papikian其他文献
Endomorphisms of exceptional $${\mathcal{D}}$$ -elliptic sheaves
- DOI:
10.1007/s00209-009-0576-x - 发表时间:
2009-07-28 - 期刊:
- 影响因子:1.000
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
Computing endomorphism rings and Frobenius matrices of Drinfeld modules
- DOI:
10.1016/j.jnt.2019.11.018 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Sumita Garai;Mihran Papikian - 通讯作者:
Mihran Papikian
On component groups of Jacobians of quaternionic modular curves
- DOI:
10.1007/s00013-016-0927-x - 发表时间:
2016-09-28 - 期刊:
- 影响因子:0.500
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
On eigenvalues of p-adic curvature
- DOI:
10.1007/s00229-008-0216-5 - 发表时间:
2008-09-24 - 期刊:
- 影响因子:0.600
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
On Garland’s vanishing theorem for $$\mathrm {SL}_n$$
- DOI:
10.1007/s40879-016-0100-x - 发表时间:
2016-03-15 - 期刊:
- 影响因子:0.500
- 作者:
Mihran Papikian - 通讯作者:
Mihran Papikian
Mihran Papikian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mihran Papikian', 18)}}的其他基金
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
- 批准号:
RGPIN-2019-06957 - 财政年份:2022
- 资助金额:
$ 11.42万 - 项目类别:
Discovery Grants Program - Individual
Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
- 批准号:
RGPIN-2019-06957 - 财政年份:2021
- 资助金额:
$ 11.42万 - 项目类别:
Discovery Grants Program - Individual
Shimura Varieties, Families of Modular Forms and Analogues over Function Fields
志村品种、模形式族和函数域上的类似物
- 批准号:
RGPIN-2019-06957 - 财政年份:2020
- 资助金额:
$ 11.42万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic and reduction of one-dimensional and higher-dimensional Abelian varieties over function fields
函数域上一维和高维阿贝尔簇的算术和约简
- 批准号:
442615504 - 财政年份:2020
- 资助金额:
$ 11.42万 - 项目类别:
Research Fellowships
Construction of relatively cuspidal representations attached to symmetric varieties over local fields
局部场上对称品种的相对尖峰表示的构建
- 批准号:
20K03559 - 财政年份:2020
- 资助金额:
$ 11.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On a Conjecture of Beilinson on Zero Cycles for Varieties Over Number Fields
论数域上簇的零循环贝林森猜想
- 批准号:
487298-2016 - 财政年份:2019
- 资助金额:
$ 11.42万 - 项目类别:
Postgraduate Scholarships - Doctoral
On a Conjecture of Beilinson on Zero Cycles for Varieties Over Number Fields
论数域上簇的零循环贝林森猜想
- 批准号:
487298-2016 - 财政年份:2018
- 资助金额:
$ 11.42万 - 项目类别:
Postgraduate Scholarships - Doctoral
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2018
- 资助金额:
$ 11.42万 - 项目类别:
Discovery Grants Program - Individual
The Combinatorics of Vogan Varieties over Linear Algebraic Groups
线性代数群上 Vogan 簇的组合数学
- 批准号:
528520-2018 - 财政年份:2018
- 资助金额:
$ 11.42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
- 批准号:
17K05188 - 财政年份:2017
- 资助金额:
$ 11.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)