Collaborative Research: OP-Interface States and Excitons at Heterojunctions Between Two and Three Dimensional Materials Systems

合作研究:二维和三维材料系统异质结处的OP界面态和激子

基本信息

  • 批准号:
    1709996
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical abstract: We are reaching the inevitable end of Moore's Law: the scaling law that says the number of transistors on a dense integrated circuit will double every 18 months to 2 years. This trend has been the engine of productivity growth of modern technological societies for at least 50 years. To extend this trend, an exciting class of two-dimensional materials is emerging as a major opportunity. Atomically thin layered materials, often called two dimensional materials, represent a radical departure from conventional semiconductors such as silicon that comprise current electronic devices, mimicking sheets of paper as opposed to large three dimensional blocks. This two dimensionality leads to unusual properties such as exceptionally low resistance along the sheet, yet poor conduction perpendicular to it. This makes it ideal for use in extremely high performance optical and electrical circuits. But, as in all electronic devices, junctions between materials play a central role in the overall functioning of the optical and electronic devices out of which they are made. In fact the junction is often the weakest link in the device performance chain. In this project, the research team is investigating the photophysics and energy transport at interfaces of dissimilar materials with different dimensionality. Specifically, the team explores junctions between organic semiconductors, traditional inorganic semiconductors such as silicon and gallium arsenide, and the new class of two dimensional compounds. The goal is to understand and enhance the energy and charge transport across the junctions, ultimately with the goal of vastly improving the performance of electronic and optical circuits. The potential applications of such hybrid materials include solar energy harvesting, light emitting diodes and secure quantum information technologies. This research project has a strong educational component that involves graduate and undergraduate student training, as well as summer research opportunities for underrepresented minority high school students. Technical Abstract: Understanding energy and charge transfer across interfaces between widely dissimilar semiconductor materials is key to realizing devices that exploit the unique advantages of the different contacting materials. The properties of interest that can be shared, or optimized in such materials combinations include ultrahigh optical oscillator strengths and mechanical flexibility of organics, along with the very large charge mobilities and quantum delocalization found in limited dimensional inorganic semiconductors. It is precisely these aspects that make organic molecules, two dimensional transition metal dichalcogenides and inorganic quantum wells attractive for optoelectronic applications. However, much less is known about interfaces that form between these material systems and their emergent properties. The fundamental nature of three dimensional organic and inorganic semiconductors forming junctions with two dimensional van der Waals solids presents an ideal platform to investigate interface physics. The team investigates three unique classes of heterointerfaces between systems of different composition and dimensionality: (i) organic semiconductor - two dimensional materials, (ii) inorganic semiconductor - two dimensional materials and (iii) lateral heterojunctions between dissimilar two dimensional materials. The combination of steady state and time resolved spectroscopic measurements including near field microscopies along with transport measurements are used to gain a fundamental appreciation of the physics governing the interplay of photons and electrons at these largely unexplored interfaces with the goal to develop quantum mechanical models grounded on observation of the energy and charge transfer processes across the interfaces, the formation of hybrid excited states and their transport as well as nonlinear optical properties. The anticipated outcomes include the ultimate exploitation of combinations of materials and dimensionalities through engineering of materials, interface properties, structures, and film morphologies and their tuning to achieve optimized performance for a particular application.
非技术摘要:我们正在接近摩尔定律的不可避免的终点:即一个高密度集成电路上的晶体管数量每18个月到2年就会翻一番。这一趋势至少在50年来一直是现代技术社会生产力增长的引擎。为了延续这一趋势,一种令人兴奋的二维材料正在成为一个重大机遇。原子薄的层状材料,通常被称为二维材料,代表了与传统半导体(如硅)的根本背离,传统半导体包括当前的电子器件,模仿纸张而不是大的三维块。这种二维特性带来了不同寻常的特性,例如沿薄膜沿着方向的电阻极低,而垂直于薄膜方向的导电性却很差,这使得它非常适合用于极高性能的光学和电子电路。但是,与所有电子设备一样,材料之间的连接在制造它们的光学和电子设备的整体功能中起着核心作用。事实上,连接点通常是器件性能链中最薄弱的环节。在这个项目中,研究小组正在研究具有不同维度的不同材料界面处的物理和能量传输。具体来说,该团队探索了有机半导体、传统无机半导体(如硅和砷化镓)以及新型二维化合物之间的连接。目标是了解和增强跨结的能量和电荷传输,最终目标是大幅提高电子和光学电路的性能。这种杂化材料的潜在应用包括太阳能收集、发光二极管和安全量子信息技术。这个研究项目有一个很强的教育组成部分,涉及研究生和本科生的培训,以及夏季研究机会,为代表性不足的少数民族高中学生。技术摘要:了解不同半导体材料之间的能量和电荷转移是实现利用不同接触材料的独特优势的器件的关键。在这种材料组合中可以共享或优化的感兴趣的特性包括有机物的电光振荡器强度和机械柔性,沿着在有限维无机半导体中发现的非常大的电荷迁移率和量子离域。正是这些方面使得有机分子、二维过渡金属二硫属化物和无机量子威尔斯阱对于光电应用具有吸引力。然而,对这些物质系统之间形成的界面及其涌现特性的了解要少得多。三维有机和无机半导体与二维货车德瓦耳斯固体形成结的基本性质为研究界面物理提供了一个理想的平台。该团队研究了不同组成和维度的系统之间的三种独特的异质界面:(i)有机半导体-二维材料,(ii)无机半导体-二维材料和(iii)不同二维材料之间的横向异质结。稳态和时间分辨光谱测量(包括近场显微术沿着与传输测量)的组合用于获得在这些基本上未探索的界面处管理光子和电子的相互作用的物理学的基本认识,目标是开发基于跨界面的能量和电荷转移过程的观察的量子力学模型,杂化激发态的形成及其输运和非线性光学性质。预期的成果包括通过材料、界面特性、结构和薄膜形态的工程设计最终利用材料和维度的组合,并对其进行调整,以实现特定应用的优化性能。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface [invited]
  • DOI:
    10.1364/ome.9.000536
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Guddala, S.;Bushati, R.;Menon, V. M.
  • 通讯作者:
    Menon, V. M.
Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons
  • DOI:
    10.1021/acsphotonics.9b01357
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Deshmukh, Rahul;Marques, Paulo;Menon, Vinod M.
  • 通讯作者:
    Menon, Vinod M.
Optical analog of valley Hall effect of 2D excitons in hyperbolic metamaterial
  • DOI:
    10.1364/optica.404063
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    S. Guddala;M. Khatoniar;Nicholas S. Yama;W. Liu;G. Agarwal;V. Menon
  • 通讯作者:
    S. Guddala;M. Khatoniar;Nicholas S. Yama;W. Liu;G. Agarwal;V. Menon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vinod Menon其他文献

Methylphenidate enhances spontaneous fluctuations in reward and cognitive control networks in children with attention-deficit/hyperactivity disorder: a randomized control trial
哌醋甲酯增强注意力缺陷/多动症儿童奖励和认知控制网络的自发波动:一项随机对照试验
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshifumi Mizuno;Weidong Cai;Kaustubh Supekar;Kai Makita Shinichiro Takiguchi;Akemi Tomoda;Vinod Menon
  • 通讯作者:
    Vinod Menon
Integrative Brain Network and Salience Models of Psychopathology and Cognitive Dysfunction in Schizophrenia
精神分裂症中精神病理学和认知功能障碍的整合脑网络和显著性模型
  • DOI:
    10.1016/j.biopsych.2022.09.029
  • 发表时间:
    2023-07-15
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Vinod Menon;Lena Palaniyappan;Kaustubh Supekar
  • 通讯作者:
    Kaustubh Supekar
Bariatric surgery for spontaneous ovulation in women living with polycystic ovary syndrome: the BAMBINI multicentre, open-label, randomised controlled trial
多囊卵巢综合征女性自发排卵的减肥手术:BAMBINI 多中心、开放标签、随机对照试验
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suhaniya N S Samarasinghe;Bianca Leca;Shahd Alabdulkader;Georgios K. Dimitriadis;Allan Davasgaium;P. Thadani;Kate Parry;Migena Luli;Karen O’Donnell;Brett Johnson;Ali Abbara;Florian Seyfried;Rachel Morman;Ahmed R Ahmed;S. Hakky;Christos Tsironis;Sanjay Purkayastha;C. W. L. Roux;Stephen Franks;Vinod Menon;H. Randeva;Alexander D Miras
  • 通讯作者:
    Alexander D Miras
SDGs 時代の教育普遍化と格差の開発研究
SDGs时代教育普及与差异的发展研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshifumi Mizuno;Weidong Cai;Kaustubh Supekar;Kai Makita Shinichiro Takiguchi;Akemi Tomoda;Vinod Menon;小川未空・坂上勝基・澤村信英
  • 通讯作者:
    小川未空・坂上勝基・澤村信英
The implications of defining obesity as a disease: a report from the Association for the Study of Obesity 2021 annual conference
将肥胖定义为一种疾病的影响:来自肥胖研究协会 2021 年年会的报告
  • DOI:
    10.1016/j.eclinm.2023.101962
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Migena Luli;Giles Yeo;Emma Farrell;Jane Ogden;Helen Parretti;Emma Frew;Stephen Bevan;Adrian Brown;Jennifer Logue;Vinod Menon;Nadya Isack;Michael Lean;Chris McEwan;Paul Gately;Simon Williams;Nerys Astbury;Maria Bryant;Kenneth Clare;Georgios K. Dimitriadis;Graham Finlayson;Alexander Dimitri Miras
  • 通讯作者:
    Alexander Dimitri Miras

Vinod Menon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vinod Menon', 18)}}的其他基金

Strain engineering of exciton-polaritons in 2D Semiconductors
二维半导体中激子极化子的应变工程
  • 批准号:
    2130544
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NCS-FO: Integrated neurocognitive process models of individual differences in children’s math problem solving strategies, learning and development
NCS-FO:儿童数学问题解决策略、学习和发展个体差异的综合神经认知过程模型
  • 批准号:
    2024856
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Integrated quantum photonics using van der Waals materials
使用范德华材料的集成量子光子学
  • 批准号:
    1906096
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices
QII-TAQS:基于极化晶格的芯片级量子模拟器
  • 批准号:
    1936351
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Polaritonics using two-dimensional atomic crystals
使用二维原子晶体的极化子学
  • 批准号:
    1509551
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EFRI 2-DARE: Excitonics and Polaritonics using 2D materials (ExPo2D)
EFRI 2-DARE:使用 2D 材料的激子学和极化子学 (ExPo2D)
  • 批准号:
    1542863
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Transfer in Strongly Coupled Hybrid Organic-Inorganic Systems
合作研究:强耦合有机-无机杂化系统中的能量转移
  • 批准号:
    1410249
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative: Engineered Nonlinear Optical Materials Based on Hybrid Nanocomposites
协作:基于混合纳米复合材料的工程非线性光学材料
  • 批准号:
    1105392
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Cognitive Neuroscience of Mathematical Skill Development
数学技能发展的认知神经科学
  • 批准号:
    0750340
  • 财政年份:
    2008
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Conference on Brain Network Dynamics, UC Berkeley, January 2007
脑网络动力学会议,加州大学伯克利分校,2007 年 1 月
  • 批准号:
    0652375
  • 财政年份:
    2007
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127331
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1938702
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709601
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710514
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
  • 批准号:
    1720291
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1720116
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709275
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了