Quantum Interference and Coherence Effects on Charge Transport in Organic Semiconductors

有机半导体中电荷传输的量子干涉和相干效应

基本信息

  • 批准号:
    1710104
  • 负责人:
  • 金额:
    $ 33.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: This project addresses preparation and investigation of new materials made of organic molecules possessing electronic properties that enhance the performance of semiconductors. These electronic properties determine how electrons flow along multiple possible pathways in the semiconductor, and therefore are anticipated to affect the material's behavior. Optical probe techniques utilizing ultra-fast lasers are implemented to understand the details of electronic charge transport in semiconductors comprising these new organic molecules. Such semiconductors may be utilized to significantly enhance the performance of ultra-fast optical or electronic devices that are at the core of communications and information technologies. These inexpensive materials, while attractive for implementing improvements to device performance, may therefore also have major impact on the economy. This project encompasses a wide variety of disciplines in materials science, offering training opportunities to scientists at all academic levels. Outreach plans further include ongoing efforts at Northwestern University to integrate students in grades K-12 in educational activities.Technical description: Photo-initiated charge transfer events in organic semiconductors can occur over a very large range of timescales. However, the uniquely quantum mechanical aspect of electronic coherence generally persists for only 10s to 100s of femtoseconds (fs). This project designs and synthesizes new organic semiconductors to more easily detect and exploit these electronic coherences, and to investigate how the consequences of coherent charge transfer can be used to enhance charge generation and transport in organic semiconductors. Femtosecond time-resolved spectroscopies are used to study the charge transport dynamics at the earliest stages, where the influence of electronic coherences is manifest. More specifically, this project is investigating how coherent charge transfer from a donor to two or more electron acceptors occurs within molecular building blocks of organic semiconductors. Separately, the project investigates coherent charge transfer in thin solid films of organic semiconductors. Additionally, the influence of quantum interference in multi-path charge transfer processes on the rate and efficiency of electron-hole pair production in organic semiconductors is addressed. The ability to tailor the design and performance of organic semiconductors via quantum coherence effects is anticipated to enhance semiconductor device performance, therefore impacting electronic and photonic devices commonly used in modern communications and information technologies.
非技术性描述:本项目致力于由具有电子特性的有机分子制成的新材料的制备和研究,以提高半导体的性能。这些电子性质决定了电子如何在半导体中沿着沿着多条可能的路径流动,因此预计会影响材料的行为。利用超快激光的光学探针技术被实施以了解包括这些新的有机分子的半导体中的电子电荷传输的细节。这样的半导体可以用于显著增强处于通信和信息技术的核心的超快光学或电子设备的性能。这些廉价的材料,虽然有吸引力的实施改善设备的性能,因此也可能对经济产生重大影响。该项目涵盖了材料科学的各种学科,为所有学术水平的科学家提供培训机会。推广计划还包括西北大学正在进行的努力,将K-12年级的学生纳入教育活动。技术说明:有机半导体中的光引发电荷转移事件可以在很大的时间范围内发生。然而,电子相干性的独特量子力学方面通常仅持续10秒至100秒的飞秒(fs)。该项目设计和合成新的有机半导体,以更容易地检测和利用这些电子相干性,并研究如何利用相干电荷转移的结果来增强有机半导体中的电荷产生和传输。飞秒时间分辨光谱被用来研究电荷输运动力学的最早阶段,在那里的电子相干的影响是显而易见的。更具体地说,该项目正在研究如何在有机半导体的分子构建块内发生从供体到两个或更多个电子受体的相干电荷转移。另外,该项目研究有机半导体固体薄膜中的相干电荷转移。此外,多路径电荷转移过程中的量子干涉对有机半导体中电子空穴对产生的速率和效率的影响进行了解决。通过量子相干效应定制有机半导体的设计和性能的能力预计将提高半导体器件的性能,从而影响现代通信和信息技术中常用的电子和光子器件。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Coherence in Ultrafast Photo-driven Charge Separation
超快光驱动电荷分离中的量子相干性
  • DOI:
    10.1039/c8fd00218e
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Phelan, Brian T;Schultz, Jonathan;Zhang, Jinyuan;Huang, Guan-Jhih;Young, Ryan Michael;Wasielewski, Michael R
  • 通讯作者:
    Wasielewski, Michael R
Choosing sides: unusual ultrafast charge transfer pathways in an asymmetric electron-accepting cyclophane that binds an electron donor
选择一边:结合电子供体的不对称电子接受环烷中不寻常的超快电荷转移途径
  • DOI:
    10.1039/c8sc05514a
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Zhou, Jiawang;Wu, Yilei;Roy, Indranil;Samanta, Avik;Stoddart, J. Fraser;Young, Ryan M.;Wasielewski, Michael R.
  • 通讯作者:
    Wasielewski, Michael R.
Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant
  • DOI:
    10.1002/adma.202001592
  • 发表时间:
    2020-06-29
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Beldjoudi, Yassine;Atilgan, Ahmet;Stoddart, J. Fraser
  • 通讯作者:
    Stoddart, J. Fraser
Transient Two-Dimensional Electronic Spectroscopy: Coherent Dynamics at Arbitrary Times along the Reaction Coordinate
瞬态二维电子能谱:沿反应坐标任意时间的相干动力学
  • DOI:
    10.1021/acs.jpclett.9b00826
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mandal, Aritra;Schultz, Jonathan D.;Wu, Yi-Lin;Coleman, Adam F.;Young, Ryan M.;Wasielewski, Michael R.
  • 通讯作者:
    Wasielewski, Michael R.
Quantum Coherence Enhances Electron Transfer Rates to Two Equivalent Electron Acceptors
  • DOI:
    10.1021/jacs.9b06166
  • 发表时间:
    2019-08-07
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Phelan, Brian T.;Zhang, Jinyuan;Wasielewski, Michael R.
  • 通讯作者:
    Wasielewski, Michael R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Wasielewski其他文献

Temperature Dependent Conformational Change of meso-Hexakis(pentafluorophenyl)[28]Hexaphyrins(1.1.1.1.1.1)into Mobius Structures
内消旋六基六(五氟苯基)[28]六菲林(1.1.1.1.1.1)随温度变化形成莫比乌斯结构
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kil Suk Kim;zin Seok Yoon;Annie Ricks;Jae-Yoon Shin;森中樹;Jeyaraman Sankar;斉藤尚平;Young Mee Jung;Michael Wasielewski;大須賀篤弘;Dongho Kim
  • 通讯作者:
    Dongho Kim
Temperature Dependent Conformational Change of meso-Hexakis (pentafluorophenyl) [28] Hexaphyrins (1. 1. 1. 1. 1. 1) into Mobuis Structures
内消旋 Hexakis(五氟苯基)[28]六菲林 (1. 1. 1. 1. 1. 1) 随温度变化形成 Mobuis 结构
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kil Suk Kim;Zin Seok Yoon;Jae-Yoon Shin;Jeyaraman Sankar;Shohei Saito;Young Mee Jung;Michael Wasielewski;Atsuhiro Osuka;Dongho Kim
  • 通讯作者:
    Dongho Kim

Michael Wasielewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Wasielewski', 18)}}的其他基金

Photogenerated Multi-Spin Systems as Qubits for Quantum Information Science
光生多自旋系统作为量子信息科学的量子位
  • 批准号:
    2154627
  • 财政年份:
    2022
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Continuing Grant
Quantum Coherence Effects on Charge Generation in Organic Semiconductors
量子相干性对有机半导体中电荷产生的影响
  • 批准号:
    2003739
  • 财政年份:
    2020
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Hyperpolarized Multi-Spin Systems as Qubits for Quantum Information Science
超极化多自旋系统作为量子信息科学的量子位
  • 批准号:
    1900422
  • 财政年份:
    2019
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Plasmon-Driven Chemistry as Revealed by Ultrafast SERS, Single Molecule SERS, and Electrochemical TERS
超快 SERS、单分子 SERS 和电化学 TERS 揭示的等离激元驱动化学
  • 批准号:
    1807278
  • 财政年份:
    2018
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Spin Dynamics of Photogenerated Multi-Spin Systems
光生多自旋系统的自旋动力学
  • 批准号:
    1565925
  • 财政年份:
    2016
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Quantum Information and Quantum Computation for Chemistry: Challenges and Opportunities
化学的量子信息和量子计算:挑战和机遇
  • 批准号:
    1655187
  • 财政年份:
    2016
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Molecular Plasmonics: Single Molecule and Ultrafast Surface-Enhanced Raman Spectroscopy
分子等离子体学:单分子和超快表面增强拉曼光谱
  • 批准号:
    1506683
  • 财政年份:
    2015
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Continuing Grant
Manipulating Multi-Spin Dynamics in Systems Targeting Organic Spintronics
操纵有机自旋电子学系统中的多自旋动力学
  • 批准号:
    1266201
  • 财政年份:
    2013
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Renewable Energy: Interdisciplinary Science of Solar Fuels 2014 Renewable Energy: Solar Fuels Gordon Research Conference and Gordon Research Seminar
可再生能源:太阳能燃料跨学科科学 2014 可再生能源:太阳能燃料戈登研究会议和戈登研究研讨会
  • 批准号:
    1332615
  • 财政年份:
    2013
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Spin Coherences in Photosystem I Reaction Center Proteins and Model Systems
光系统 I 反应中心蛋白质和模型系统中的自旋相干性
  • 批准号:
    1112258
  • 财政年份:
    2011
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非分裂神经元系统的CRISPR interference作用机制及应用研究
  • 批准号:
    31771482
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Discovery Projects
Drivers of Political Interference by Military Officers: An Individual-Level Quantitative Analysis
军官政治干预的驱动因素:个人层面的定量分析
  • 批准号:
    24K16290
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Highly integrated GaN power converter to calm the interference
高集成GaN功率转换器,平息干扰
  • 批准号:
    EP/Y002261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Research Grant
CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
  • 批准号:
    2337796
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
  • 批准号:
    2403871
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
ERI: AI-Enhanced Dynamic Interference Suppression in Cognitive Sensing with Reconfigurable Sparse Arrays
ERI:利用可重构稀疏阵列在认知传感中进行人工智能增强型动态干扰抑制
  • 批准号:
    2347220
  • 财政年份:
    2024
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Standard Grant
Functional evaluation of spatio-temporal characteristics of electrical retinal stimulation by temporal interference
时间干扰视网膜电刺激时空特征的功能评估
  • 批准号:
    23K09025
  • 财政年份:
    2023
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strategies for Detecting Fibrin Interference
检测纤维蛋白干扰的策略
  • 批准号:
    23K06851
  • 财政年份:
    2023
  • 资助金额:
    $ 33.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了