Highly integrated GaN power converter to calm the interference

高集成GaN功率转换器,平息干扰

基本信息

  • 批准号:
    EP/Y002261/1
  • 负责人:
  • 金额:
    $ 20.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

In various systems that underpin people's living condition, movement and communication, we need power electronics converters to transfer electrical energy. For example, they can transfer almost constant voltage and current generated from a solar panel to the power grid, where the voltage and current are alternating polarities. They can also transfer alternating voltage from household power sockets to charge electric vehicles, smart phones and laptops, where the voltage of the batteries is almost constant. As the electricity is generated from a combination of sources (fossil fuel and renewable energy), the efficiency of the power electronics converters plays a vital role to reduce CO2 emission for Net Zero and sustainable development. The operation of the power electronics converters relies on the semiconductor transistors. A power electronics converter usually has 6 or more transistors. Each transistor works like a "switch" to turn on and off repeatedly following certain control patterns. When a transistor switches from one state to another, there is an overlap of voltage and current across it which causes power losses. If the efficiency of power electronics converters needs to be improved, each transistor's transition should be reduced. A recently developed transistor based on emerging gallium nitride (GaN) materials demonstrate the capability to transfer the kilowatt power during nanoseconds, which reduces the power losses more than 10 times in comparison to a traditional transistor based on silicon. However, the fast power transition comes with the challenge of the electromagnetic noise, which will propagate from one transistor to another, and from a high power circuit to a low power control circuit for control patterns generation. Consequently, the transistor will withstand higher voltage and current spikes that reduce their lifetime, and the low power circuit will generate wrong control patterns and make the whole converter fail to operate. Under the fast switching of GaN, the noise interference also reaches to a level that conventional approaches based on silicon transistors can no longer work. An ambitious target of the proposal is to reduce the noise interference by using a new design to connect multiple GaN transistors with their control circuits, and assemble them together in a power converter. We will first identify noise interference strength and polarity generated by each transistor, and then use the noise interference of the same strength but different polarities to cancel each other. Therefore, the total effective noise interference will reduce to almost zero in our proposed design, and power converter efficiency could be greatly improved. To achieve this ambitious design, a new partnership with French Ampere Lab will be developed and built via knowledge transfer and learning. The unique and global leading expertise of French Ampere Lab on 3D high-density packaging is crucial for the implementation of the design, and it will complement University of Nottingham team's expertise of power transistor application. Eventually, it will benefit UK and make UK a world leading role for emerging GaN power electronics technology that will underpin Net Zero and sustainable development.
在支撑人们生活、运动和通信的各种系统中,我们需要电力电子转换器来传输电能。例如,它们可以将太阳能电池板产生的几乎恒定的电压和电流传输到电网,其中电压和电流是交替极性的。它们还可以从家用电源插座传输交流电,为电动汽车、智能手机和笔记本电脑充电,电池的电压几乎恒定。由于电力是由多种来源(化石燃料和可再生能源)产生的,因此电力电子转换器的效率对于减少净零和可持续发展的二氧化碳排放至关重要。电力电子转换器的操作依赖于半导体晶体管。电力电子转换器通常具有6个或更多个晶体管。每个晶体管就像一个“开关”,按照一定的控制模式反复打开和关闭。当晶体管从一种状态切换到另一种状态时,其两端的电压和电流会重叠,从而导致功率损耗。如果需要提高电力电子转换器的效率,则应减少每个晶体管的过渡。最近开发的基于新兴氮化镓(GaN)材料的晶体管展示了在纳秒内传输千瓦功率的能力,与基于硅的传统晶体管相比,其功率损耗减少了10倍以上。然而,快速功率转换伴随着电磁噪声的挑战,电磁噪声将从一个晶体管传播到另一个晶体管,并且从高功率电路传播到用于控制模式生成的低功率控制电路。因此,晶体管将承受更高的电压和电流尖峰,这会减少它们的寿命,并且低功率电路将产生错误的控制模式,使整个转换器无法工作。在GaN的快速开关下,噪声干扰也达到了基于硅晶体管的传统方法无法工作的水平。该提案的一个雄心勃勃的目标是通过使用新的设计将多个GaN晶体管与其控制电路连接起来,并将它们组装在一个功率转换器中,以减少噪声干扰。我们会先识别每个晶体管产生的噪声干扰强度和极性,然后用强度相同但极性不同的噪声干扰相互抵消。因此,在我们所提出的设计中,总的有效噪声干扰将减少到几乎为零,并且功率转换器的效率可以大大提高。为了实现这一雄心勃勃的设计,将通过知识转移和学习与法国安培实验室建立新的合作伙伴关系。法国安培实验室在3D高密度封装方面的独特和全球领先的专业知识对设计的实施至关重要,它将补充诺丁汉大学团队在功率晶体管应用方面的专业知识。最终,它将使英国受益,并使英国成为新兴GaN电力电子技术的世界领导者,这将支持Net Zero和可持续发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Li其他文献

Modeling complexity in engineered infrastructure system: Water distribution network as an example.
工程基础设施系统的复杂性建模:以供水管网为例。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    F. Zeng;Xiang Li;Ke Li
  • 通讯作者:
    Ke Li
Integrated PET and confocal imaging informs a functional timeline for the dynamic process of vascular reconnection during grafting
集成 PET 和共焦成像为移植过程中血管重新连接的动态过程提供了功能时间表
  • DOI:
    10.1101/2022.10.27.513862
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Margaret H. Frank;S. Komarov;Qiang Wang;Ke Li;Matthew Hecking;Halley Fowler;Claire Ravenburg;Audrey Widmier;A. Johnson;Hannah R Thomas;Viktoriya Coneva;D. Chitwood;Y. Tai
  • 通讯作者:
    Y. Tai
Sintering and mechanical properties of lithium disilicate glass-ceramics prepared by sol-gel method
溶胶-凝胶法制备二硅酸锂微晶玻璃的烧结及力学性能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ke Li;H. Kou;C. Ning
  • 通讯作者:
    C. Ning
Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field
通过改变 pH 值的处理改善冷冻猪肉中肌原纤维蛋白的特性:磁场的影响
  • DOI:
    10.3390/foods13131988
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Bo Chen;Gaoang Du;Ke Li;Yu Wang;Panpan Shi;Junguang Li;Yan
  • 通讯作者:
    Yan
Fast determination of residual sulfonamides in milk by in-tube solid-phase microextraction coupled with capillary electrophoresis-laser induced fluorescence
管内固相微萃取毛细管电泳-激光诱导荧光快速测定牛奶中残留磺胺类药物

Ke Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Li', 18)}}的其他基金

Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
  • 批准号:
    MR/X011135/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Fellowship
Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
  • 批准号:
    MR/S017062/1
  • 财政年份:
    2019
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Fellowship

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
  • 批准号:
    82372014
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
  • 批准号:
    51008191
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
  • 批准号:
    2332167
  • 财政年份:
    2023
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
Development of GaN CMOS Monolithic Integrated Circuits Technology Using Crystal Hetero-Polarity Control
利用晶体异质性控制的GaN CMOS单片集成电路技术的开发
  • 批准号:
    22KK0055
  • 财政年份:
    2022
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
STTR Phase II: Integrated Gallium Nitride (GaN) Field Effect Transistor (FET)-Based High Density On Board Electric Vehichle (EV) Charger
STTR 第二阶段:基于集成氮化镓 (GaN) 场效应晶体管 (FET) 的高密度车载电动汽车 (EV) 充电器
  • 批准号:
    2052316
  • 财政年份:
    2022
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Cooperative Agreement
Gallium Nitride Smart Power Integrated Circuit Technology (GaN SPICe)
氮化镓智能功率集成电路技术(GaN SPICe)
  • 批准号:
    EP/V026577/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Research Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
  • 批准号:
    2132329
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
  • 批准号:
    EP/V005286/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Research Grant
Gallium Nitride Smart Power Integrated Circuit Technology (GaN SPICe)
氮化镓智能功率集成电路技术(GaN SPICe)
  • 批准号:
    EP/V026127/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Research Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
  • 批准号:
    2132323
  • 财政年份:
    2021
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Standard Grant
Short-gate GaN HEMTs for mm-wave integrated circuits
用于毫米波集成电路的短栅 GaN HEMT
  • 批准号:
    2429191
  • 财政年份:
    2020
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Studentship
Integrated Transceivers for 5G Mobile Communications in a strained GaN-HEMT Technology
采用应变 GaN-HEMT 技术的 5G 移动通信集成收发器
  • 批准号:
    426573565
  • 财政年份:
    2019
  • 资助金额:
    $ 20.35万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了