GOALI: Nanostructure-enabled Quasi-Phase-Matched Counter-Propagating Optical Parametric Oscillator
GOALI:纳米结构准相位匹配反向传播光学参量振荡器
基本信息
- 批准号:1710128
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract ECCS-1710128Title: GOALI Nanoscale Fabrication of Nonlinear Optical Devices Non-technical description: Nonlinear optical devices play a critical role in a wide range of optical systems, enabling signal amplification, wavelength/frequency conversion, and all-optical control or modulation of light. These devices have an immense range of applications, including communications, medical imaging, remote sensing and quantum information systems. One common approach to implement nonlinear optical devices is through quasi-phase-matching (QPM) or periodic poling. This method entails precise, small-scale modifications in the optical properties of nonlinear optical materials (poling) in order to dramatically improve their efficiency, and has revolutionized the field of nonlinear optics. The goal of this project is to develop new methods to reproducibly fabricate smaller poling domains in QPM nonlinear optical devices, potentially greatly enlarging the range of applications for these devices. Smaller poling domains would enable wavelength conversion devices capable of working with at different optical wavelengths, greatly enlarging the operating wavelength range in communications or medical imaging applications. Such devices would facilitate the detection of very weak optical signals at longer wavelengths and enhance the performance of remote sensing or quantum information systems. This work will be performed in collaboration with an industrial partner, AdvR Inc., under the framework of the Grant Opportunity for Academic Liaison with Industry (GOALI) program. This academic-industrial partnership will leverage the capabilities and resources of both partners to achieve the project goals. The associated education and outreach efforts will promote student participation, from underrepresented minority groups, in the Montana Apprenticeship Program. In addition, the GOALI collaboration will allow students to have strong research interactions in both academia and industry.Technical description: The PI proposes to develop nanoscale fabrication methods that will lead to the next generation of nonlinear optical devices. Optical waveguides using periodic poling have revolutionized nonlinear optics by providing significantly higher efficiency and enabling engineering of the optical properties of devices. Lithium niobate material (LN), especially doped with magnesium oxide (MgO:LN), has been frequently used due to its relatively strong nonlinear properties that lead to higher efficiency and power- handling capability. The basic goal of this project the process development to enable sub-micron scale poling and structuring of MgO:LN. Periodically poled nonlinear optical waveguides with nanoscale domains would facilitate parametric wavelength conversion with higher efficiency and with greater control over the operating wavelengths (e.g. operation in the infrared). Once the methods to produce nanoscale poling domains and to control structural features in MgO:LN have been established, further investigations to enhance the nonlinear performance of these devices will be pursued, such as dispersion engineering and wavelength-selective resonant cavities. The proposed work will enable the realization of a mirrorless optical parametric oscillator (OPO) that would enable high-efficiency nonlinear optical processes with relatively short interaction lengths and significant flexibility in operating wavelengths. Such OPOs would significantly broadened range of applications for nonlinear optical devices.
摘要ECCS-1710128标题:GALI纳米级非线性光学器件的制造非技术描述:非线性光学器件在广泛的光学系统中发挥着关键作用,使信号放大、波长/频率转换以及全光控制或光调制成为可能。这些设备具有广泛的应用,包括通信、医学成像、遥感和量子信息系统。实现非线性光学器件的一种常见方法是通过准相位匹配(QPM)或周期极化。这种方法需要对非线性光学材料(极化)的光学性质进行精确的、小范围的修改,以显著提高其效率,并彻底改变了非线性光学领域。本项目的目标是开发新的方法来重复制造QPM非线性光学器件中较小的极化区域,从而极大地扩大这些器件的应用范围。更小的极化区域将使波长转换设备能够在不同的光学波长下工作,从而极大地扩大通信或医学成像应用中的工作波长范围。这类设备将有助于探测波长较长的非常微弱的光信号,并提高遥感或量子信息系统的性能。这项工作将与工业合作伙伴ADVR Inc.合作,在GOALI计划框架下进行。这一学术-产业合作伙伴关系将利用双方的能力和资源来实现项目目标。相关的教育和推广工作将促进学生参与蒙大拿州学徒计划,这些学生来自代表人数较少的少数群体。此外,Goali的合作将使学生在学术界和工业界都有强大的研究互动。技术描述:PI建议开发纳米级制造方法,这将导致下一代非线性光学器件。使用周期性极化的光波导通过提供显著更高的效率并使设备的光学特性能够工程化,使非线性光学发生了革命性的变化。LiNbO_3(LN)材料,特别是掺镁(MgO:LN)材料,由于具有较强的非线性,具有较高的效率和功率处理能力,因而得到了广泛的应用。该项目的基本目标是开发能够实现亚微米级极化和结构的MgO:LN的工艺。具有纳米尺度区域的周期性极化非线性光波导将促进参数波长转换,具有更高的效率和对工作波长的更好控制(例如,在红外中的工作)。一旦在MgO:LN中产生纳米级极化磁畴和控制结构特征的方法已经建立,将继续进行进一步的研究,以提高这些器件的非线性性能,如色散工程和波长选择谐振腔。这项拟议的工作将使无镜光参量振荡器(OPO)的实现成为可能,该OPO将能够以相对较短的相互作用长度和显著的波长灵活性来实现高效的非线性光学过程。这样的OPO将大大拓宽非线性光学器件的应用范围。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nano-scale ferroelectric domain differentiation in periodically poled lithium niobate with auger electron spectroscopy
用俄歇电子能谱研究周期性极化铌酸锂的纳米级铁电畴差异
- DOI:10.1364/optcon.452657
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:McLoughlin, Torrey;Randall Babbitt, Wm.;Nakagawa, Wataru
- 通讯作者:Nakagawa, Wataru
Auger electron spectroscopy mapping of lithium niobate ferroelectric domains with nano-scale resolution
具有纳米级分辨率的铌酸锂铁电域的俄歇电子能谱图
- DOI:10.1364/ome.474717
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:McLoughlin, Torrey;Babbitt, Wm. Randall;Nakagawa, Wataru
- 通讯作者:Nakagawa, Wataru
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wataru Nakagawa其他文献
RGB-D-T camera system for AR display of temperature change
用于温度变化AR显示的RGB-D-T相机系统
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Kazuki Matsumoto;Wataru Nakagawa;Francois de Sorbier;Maki Sugimoto;Hideo Saito;Shuji Senda;Takashi Shibata;and Akihiko Iketani - 通讯作者:
and Akihiko Iketani
Workers' Mental Health and Firm Performance : Evidence from Firms' Longitudinal Data in Japan
工人心理健康与企业绩效:来自日本企业纵向数据的证据
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kazuki Matsumoto;Wataru Nakagawa;Hideo Saito;Maki Sugimoto;Takashi Shibata;and Shoji Yachida;Isamu Yamamoto and Sachiko Kuroda - 通讯作者:
Isamu Yamamoto and Sachiko Kuroda
Temperature monitoring with a high-speed camera based on two color method and its CFD analysis in Cu direct laser drilling of printed circuit board
印刷电路板铜直接激光钻孔中基于二色法的高速摄像机温度监测及其CFD分析
- DOI:
10.1299/transjsme.20-00413 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
T. Hirogaki;E. Aoyama;Ryouta Yamaguchi;Wataru Nakagawa - 通讯作者:
Wataru Nakagawa
Wataru Nakagawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wataru Nakagawa', 18)}}的其他基金
Hybrid micro/nano-optical devices for high-fidelity imaging
用于高保真成像的混合微/纳米光学器件
- 批准号:
1002058 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似海外基金
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
- 批准号:
22KF0310 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Evolution of nanostructure and properties in nuclear graphite with irradiation damage
辐照损伤下核石墨纳米结构和性能的演变
- 批准号:
2889672 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
- 批准号:
10567076 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
- 批准号:
BB/X012557/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Linking formation mechanisms, nanostructure and function in metal oxide nanosheets using multimodal characterisation.
使用多峰表征将金属氧化物纳米片的形成机制、纳米结构和功能联系起来。
- 批准号:
EP/W026937/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Effect of mechanical properties and surface nanostructure on phosphate-based glasses biomedical performance
机械性能和表面纳米结构对磷酸盐基玻璃生物医学性能的影响
- 批准号:
2845244 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
Development, control, and functional significance of variations in collagen fibril nanostructure, with application to the creation of novel biomaterials
胶原纤维纳米结构变化的开发、控制和功能意义,及其在新型生物材料创建中的应用
- 批准号:
RGPIN-2020-06035 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Nanostructure transfer to cell membrane by cytoplasmic gelation and its optical sensor application
细胞质凝胶化纳米结构转移至细胞膜及其光学传感器应用
- 批准号:
22K18760 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Creation of chiral reaction field using nanostructure
利用纳米结构创建手性反应场
- 批准号:
22K19003 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)