Collaborative Research: Nanopatterning and temporal control of phase-change materials for reconfigurable photonics

合作研究:可重构光子学相变材料的纳米图案化和时间控制

基本信息

  • 批准号:
    1710273
  • 负责人:
  • 金额:
    $ 19.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The ability to control light dynamically, commonly known as reconfigurable photonics, is ubiquitous in everyday life with diverse and varied applications ranging from supermarket barcode readers to adaptive optics for deep-space telescopes, and from dynamic theatre lighting to medical microscopy. Currently, these applications rely on spatial light modulator (SLM) technologies that have significant limits: They are slow, costly, involve fragile moving parts, and not versatile enough to adapt to modern challenges. In this project, a material known as phase-change materials (PCMs) is used to create a faster and less costly spatial light modulator. This is done by combining a type of PCM that is commonly used in Blu-Ray discs, known as GST, with new types of nanofabrication and electronic control to create advanced reconfigurable photonic devices with performance metrics that far exceed what is currently available. The benefits of this project are three fold. At the core, this project falls at the intersection between two fields of research: nanoscale thermal science, and photonics. This will lead to an advancement of both fields in a new and unexplored dimension. On the education front, the project will allow for student exchanges between the University of Dayton and Stanford University, for the first time. It will also bolster the relationship with minority-serving institutes. The longer term impact of this work will be to provide a stepping stone towards providing compact, high speed, low power consumption devices, manufactured using inexpensive fabrication methods for use in technologies based on reconfigurable photonics. Current state-of-the art in light modulation for reconfigurable photonic applications relies on spatial light phase modulation via liquid-crystal on silicon (LCoS) or Microelectromechanical (MEMS) systems, both of which have major limitations. One current hurdle is the speed at which these devices operates, and the other is the complexity and low-yield of their fabrication process. The goal of this research is to use phase-change materials (PCMs) for coherent spatial and temporal control of light in a lossless, high-speed manner, well beyond the performance of standard liquid crystal and MEMs devices today. PCMs alter their optical properties (refractive index) through a controlled crystalline-to-amorphous phase transition, making them ideal for light modulation applications. However, two problems persist with PCMs: a) The phase transition is slow and b) the phase transition is binary (on/off), preventing the implementation of the necessary phase modulation devices. This proposal looks at both these problems and presents a novel and unified solution based on nanopatterning and temporal control of the phase-change process. Through the use of a new and scalable technique for self-assembled patterning, we alter the temperature dynamics and increase the speed of the phase-change by orders of magnitude. By using temporally-controlled electric stimulus, it is possible to achieve true continuous phase modulation of light overcoming the binary nature of the material itself. Phase-change materials, which naturally lend themselves to mass manufacturing, have the potential to alter the area of reconfigurable photonics and light modulation devices provided their full potential is exploited. This project aims to achieve that potential through a new collaboration between fields of engineering that typically do not see much overlap. Ultimately, the goal is to implement basic spatial light modulation devices, with unique engineered thermal properties, which presents a new cross-pollination of these fields, which could lead to further developments in both areas of science.
动态控制光的能力,通常被称为可重构光子学,在日常生活中无处不在,应用范围从超市条形码阅读器到深空望远镜的自适应光学器件,从动态剧院照明到医学显微镜。目前,这些应用依赖于空间光调制器(SLM)技术,但这些技术有很大的局限性:它们速度慢,成本高,涉及脆弱的移动部件,并且功能不够多,无法适应现代挑战。在这个项目中,一种被称为相变材料(PCM)的材料被用来创建一个更快,成本更低的空间光调制器。这是通过将蓝光光盘中常用的一种PCM(称为GST)与新型纳米纤维和电子控制相结合来实现的,以创建性能指标远远超过目前可用的先进可重构光子器件。这个项目的好处有三个方面。在核心,这个项目福尔斯落在两个研究领域之间的交叉点:纳米热科学和光子学。这将导致这两个领域在一个新的和未探索的维度的进步。在教育方面,该项目将首次允许代顿大学和斯坦福大学之间进行学生交流。它还将加强与少数群体服务机构的关系。这项工作的长期影响将是提供一个垫脚石,朝着提供紧凑,高速,低功耗的设备,使用廉价的制造方法制造,用于基于可重构光子学的技术。用于可重构光子应用的光调制的现有技术依赖于经由硅上液晶(LCoS)或微机电(MEMS)系统的空间光相位调制,这两种系统都具有重大限制。目前的一个障碍是这些器件的运行速度,另一个障碍是其制造工艺的复杂性和低产量。这项研究的目标是使用相变材料(PCM)以无损,高速的方式对光进行相干的空间和时间控制,远远超出当今标准液晶和MEMS器件的性能。PCM通过受控的晶体到非晶相变改变其光学特性(折射率),使其成为光调制应用的理想选择。然而,PCM仍然存在两个问题:a)相变慢,以及B)相变是二进制的(开/关),这妨碍了必要的相位调制设备的实现。该提案着眼于这两个问题,并提出了一种新的和统一的解决方案的基础上纳米图案化和时间控制的相变过程。通过使用一种新的可扩展的自组装图案化技术,我们改变了温度动态,并将相变速度提高了几个数量级。通过使用时间控制的电刺激,可以克服材料本身的二元性质,实现光的真正连续相位调制。 相变材料自然适合大规模制造,如果它们的全部潜力得到利用,则有可能改变可重构光子学和光调制器件的领域。该项目旨在通过通常不会看到太多重叠的工程领域之间的新合作来实现这一潜力。最终,我们的目标是实现具有独特工程热特性的基本空间光调制设备,这为这些领域提供了一种新的交叉授粉,这可能会导致这两个科学领域的进一步发展。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Free-Space optical switching of GST phase-change thin films via 1550 nm light
通过 1550 nm 光进行 GST 相变薄膜的自由空间光学开关
Wavelength and power dependence on multilevel behavior of phase change materials
相变材料多级行为的波长和功率依赖性
  • DOI:
    10.1063/5.0058178
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Sevison, Gary A.;Burrow, Joshua A.;Guo, Haiyun;Sarangan, Andrew;Hendrickson, Joshua R.;Agha, Imad
  • 通讯作者:
    Agha, Imad
Chalcogenide cylindrical helix nanocollumnar thin films for switchable polarization effects
用于可切换偏振效应的硫属化物圆柱螺旋纳米柱薄膜
  • DOI:
    10.1364/cleo_at.2020.jtu2b.23
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burrow, Joshua A.;Sarangan, Andrew;Zhan, Qiwen;Agha, Imad
  • 通讯作者:
    Agha, Imad
Pixel level demonstration of phase change material based spatial light modulation
基于相变材料的空间光调制的像素级演示
  • DOI:
    10.1364/cleo_si.2020.sth3r.6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burrow, Joshua A.;Sevison, Gary A.;Asheghi, Mehdi;Hendrickson, Joshua R.;Sarangan, Andrew;Goodson, Kenneth E.;Agha, Imad
  • 通讯作者:
    Agha, Imad
Electrical and optical properties of nickel-doped Ge2Sb2Te5 films produced by magnetron co-sputtering
  • DOI:
    10.1117/12.2320843
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pengfei Guo;Gary A. Sevison;J. Burrow;I. Agha;A. Sarangan
  • 通讯作者:
    Pengfei Guo;Gary A. Sevison;J. Burrow;I. Agha;A. Sarangan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Imad Agha其他文献

Integrated optical vortex beams: Ultrafast orbital angular momentum sources beyond traditional spatial light modulators
集成的光学涡流梁:超出传统空间光调节器以外的超快轨道角动量来源
  • DOI:
    10.1016/j.scib.2024.07.018
  • 发表时间:
    2024-09-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Imad Agha
  • 通讯作者:
    Imad Agha
Nanoparticle release and sorting from a soft surface by using an opto-thermal-mechanical approach
使用光热机械方法从软表面释放和分类纳米颗粒
  • DOI:
    10.1117/12.3001657
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuesong Gao;Imad Agha
  • 通讯作者:
    Imad Agha

Imad Agha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Nanopatterning of advanced research tools to harness the mechanobiology of cell-matrix interaction for stem cell expansion
先进研究工具的纳米图案利用细胞-基质相互作用的机械生物学来进行干细胞扩增
  • 批准号:
    RGPIN-2016-04043
  • 财政年份:
    2020
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Nanopatterning of advanced research tools to harness the mechanobiology of cell-matrix interaction for stem cell expansion
先进研究工具的纳米图案利用细胞-基质相互作用的机械生物学来进行干细胞扩增
  • 批准号:
    RGPIN-2016-04043
  • 财政年份:
    2019
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Nanopatterning of advanced research tools to harness the mechanobiology of cell-matrix interaction for stem cell expansion
先进研究工具的纳米图案利用细胞-基质相互作用的机械生物学来进行干细胞扩增
  • 批准号:
    RGPIN-2016-04043
  • 财政年份:
    2018
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Three-Dimensional Laser Holographic Nanopatterning Using Metamaterial Phase Masks
合作研究:使用超材料相位掩模的三维激光全息纳米图案
  • 批准号:
    1661749
  • 财政年份:
    2017
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Three-Dimensional Laser Holographic Nanopatterning Using Metamaterial Phase Masks
合作研究:使用超材料相位掩模的三维激光全息纳米图案
  • 批准号:
    1661842
  • 财政年份:
    2017
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanopatterning and temporal control of phase-change materials for reconfigurable photonics
合作研究:可重构光子学相变材料的纳米图案化和时间控制
  • 批准号:
    1709200
  • 财政年份:
    2017
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
Nanopatterning of advanced research tools to harness the mechanobiology of cell-matrix interaction for stem cell expansion
先进研究工具的纳米图案利用细胞-基质相互作用的机械生物学来进行干细胞扩增
  • 批准号:
    RGPIN-2016-04043
  • 财政年份:
    2017
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Nanopatterning of advanced research tools to harness the mechanobiology of cell-matrix interaction for stem cell expansion
先进研究工具的纳米图案利用细胞-基质相互作用的机械生物学来进行干细胞扩增
  • 批准号:
    RGPIN-2016-04043
  • 财政年份:
    2016
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Composite Surfacing of Amorphous Materials by Laser Interference Nanopatterning
合作研究:激光干涉纳米图案化非晶材料复合表面处理
  • 批准号:
    0969255
  • 财政年份:
    2010
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Composite Surfacing of Amorphous Materials by Laser Interference Nanopatterning
合作研究:激光干涉纳米图案化非晶材料复合表面处理
  • 批准号:
    0969249
  • 财政年份:
    2010
  • 资助金额:
    $ 19.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了