Magneto-optoelectronic response in 2D atomic-layered materials

二维原子层材料中的磁光响应

基本信息

项目摘要

Abstract:Non-technical Description:The United States has the highest Gross Domestic Product in the world because it has been the leader in technological breakthroughs. Relatively recent advances such as the personal computer, the World Wide Web, the cell phone, high definition television, the forth-coming autonomous car and artificial intelligence, all have roots in government funded research and development. The meteoric growth in these areas has been made possible by the rapid advances in semiconductor capability for both electronics and photonics. To access new areas for growth, there is now a need to develop flexible, faster, thinner, and more power efficient semiconductor materials with new capability. This aim has led to the so-called van der Waals bonded materials, which are materials that can be peeled, layer by layer, down to the thickness of a single 2-dimensional (2D) atomic layer. Such materials promise high speed, greater power efficiency, flexibility, and novel electro-optic properties not found in materials utilized thus far. Thus, this research aims to study their material properties with a view towards applications. The research is to be carried out in the Physics & Astronomy Department of Georgia State University [GSU], one of the most diverse universities in the nation. The undergraduate Science, Technology, Engineering and Mathematics (STEM) educational component of this proposal aims to translate the abilities of general university students from historically underrepresented groups and women in STEM fields, into the pursuit of a career path in a STEM field, by providing them early exposure to a supportive, confidence building, research experience through mini-science projects in the 2D materials area. Such education/training provided in a southern urban inner-city academic institution in downtown Atlanta, Georgia, will help to add underrepresented sections of society to the nation's science and technology skill base for the electronics, photonics, defense, and wireless communications industries. Technical Description:Single atomic layers of bulk van der Waals bonded crystals, and stacks built up by van der Waals epitaxy including a number of single atomic layers with differing electronic, optical, spin, and superconducting properties, offer the possibility of obtaining new physical properties not available in existing bulk materials' properties that can be utilized to address outstanding technological problems in low power and flexible electronics, sensing, and photonics. Thus, this research will experimentally examine the magneto-optoelectronic response under steady state photo-excitation of 2D atomic-layered materials including mono-layer and bilayer graphene, atomically thin hexagonal boron nitride (h-BN), mono- and bilayer-molybdenum disulfide (MoS2), and other transition metal-dichalcogenides. A research team consisting of graduate students and a postdoc, with help from undergraduates participating in mini science projects, will build up 2D atomic-layered crystals by van der Waals epitaxy; fabricate devices by electron beam lithography, plasma etch, and metallization; and examine the properties of electrically contacted and non-contacted devices in the presence of a magnetic field under microwave, mm-wave, and terahertz photo-excitation. Here, some specific problems of interest include the mm-wave magneto-response of graphene, the electric field effect on photoresponse in h-BN encapsulated graphene and MoS2, and the study of the spin properties in graphene across the neutrality point. Such studies are expected to provide insight into the electronic structure of 2D materials, their photo response, spin-g-factors, spin lifetimes, and the dependence of induced bandgaps on applied electric and magnetic fields - attributes that would identify the suitability of such systems for various desirable applications. Potentially transformative results could include the observation of novel radiation-induced magnetoresistance oscillations in graphene, the realization and measurement of long spin lifetimes in h-BN encapsulated graphene, and the measurement of bandgaps in electric field biased bilayer h-BN encapsulated graphene or MoS2 or other transition metal dichalcogenides in the small bandgap limit.
摘要:非技术描述:美国拥有世界上最高的GDP,因为它一直是技术突破的领导者。相对较新的进步,如个人电脑、万维网、手机、高清晰度电视、即将到来的自动驾驶汽车和人工智能,都源于政府资助的研究和开发。这些领域的飞速发展是由于电子和光子学半导体能力的快速发展。为了进入新的增长领域,现在需要开发具有新功能的灵活、更快、更薄、更节能的半导体材料。这一目标导致了所谓的货车德瓦尔斯键合材料,其是可以逐层剥离的材料,直至单个二维(2D)原子层的厚度。这种材料承诺高速,更大的功率效率,灵活性,和新的电光性能没有发现在材料中使用至今。因此,本研究旨在研究其材料性能,以期应用。这项研究将在格鲁吉亚州立大学[GSU]的物理天文学系进行,该大学是美国最多样化的大学之一。该提案的本科科学,技术,工程和数学(STEM)教育部分旨在将来自STEM领域历史上代表性不足的群体和女性的普通大学生的能力转化为STEM领域的职业道路,通过在2D材料领域的小型科学项目为他们提供早期接触支持,建立信心,研究经验。在格鲁吉亚亚特兰大市中心的一个南部城市内城区学术机构提供的这种教育/培训将有助于将代表性不足的社会阶层增加到国家的电子、光子、国防和无线通信行业的科学和技术技能基础中。技术描述:大块货车德瓦尔斯键合晶体的单原子层,以及通过货车德瓦尔斯外延形成的堆叠,包括具有不同电子、光学、自旋和超导特性的多个单原子层,提供了获得现有大块材料特性所不具备的新物理特性的可能性,这些特性可用于解决低功率和柔性电子、传感和光子学中的突出技术问题。因此,本研究将通过实验研究2D原子分层材料(包括单层和双层石墨烯,原子薄的六方氮化硼(h-BN),单层和双层二硫化钼(MoS 2)和其他过渡金属-二硫属化物)在稳态光激发下的磁光电响应。一个由研究生和博士后组成的研究小组,在参与小型科学项目的本科生的帮助下,将通过货车德瓦尔斯外延建立二维原子层晶体;通过电子束光刻、等离子体蚀刻和金属化制造器件;并在微波、毫米波和太赫兹光激发下,在存在磁场的情况下,检查电接触和非接触器件的特性。在这里,感兴趣的一些具体问题包括石墨烯的毫米波磁响应,h-BN封装的石墨烯和MoS 2中的电场对光响应的影响,以及石墨烯在中性点上的自旋性质的研究。这样的研究预计将提供深入了解二维材料的电子结构,它们的光响应,自旋g因子,自旋寿命,以及感应带隙对所施加的电场和磁场的依赖性-这些属性将确定这些系统对各种理想应用的适用性。 潜在的变革性结果可以包括观察到石墨烯中的新型辐射诱导的磁阻振荡,实现和测量h-BN封装的石墨烯中的长自旋寿命,以及测量电场偏置的双层h-BN封装的石墨烯或MoS 2或其他过渡金属二硫属化物中的小带隙极限的带隙。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hall sign reversal in certain metamaterials
某些超材料中的霍尔符号反转
  • DOI:
    10.1063/pt.3.3611
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mani, Ramesh G.
  • 通讯作者:
    Mani, Ramesh G.
Hall devices: Improve contactless sensing technology
霍尔器件:改进非接触式传感技术
  • DOI:
    10.1038/548031e
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Mani, Ramesh G.;Kriisa, Annika
  • 通讯作者:
    Kriisa, Annika
Strain relaxation in different shapes of single crystal graphene grown by chemical vapor deposition on copper
  • DOI:
    10.1016/j.carbon.2020.07.025
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    T. Nanayakkara;U. Wijewardena;S. Withanage;A. Kriisa;Rasanga L. Samaraweera;R. Mani
  • 通讯作者:
    T. Nanayakkara;U. Wijewardena;S. Withanage;A. Kriisa;Rasanga L. Samaraweera;R. Mani
Millimeter wave radiation-induced magnetoresistance oscillations in the high quality GaAs/AlGaAs 2D electron system under bichromatic excitation
  • DOI:
    10.1103/physrevb.95.195304
  • 发表时间:
    2017-05-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gunawardana, B.;Liu, H. -C.;Mani, R. G.
  • 通讯作者:
    Mani, R. G.
Radiation-induced magnetoresistance oscillations in monolayer and bilayer graphene
  • DOI:
    10.1038/s41598-019-43866-4
  • 发表时间:
    2019-05-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mani,R. G.;Kriisa,A.;Munasinghe,R.
  • 通讯作者:
    Munasinghe,R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramesh Mani其他文献

Ramesh Mani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramesh Mani', 18)}}的其他基金

Transport studies of periodically driven electronic systems
周期性驱动电子系统的输运研究
  • 批准号:
    2210180
  • 财政年份:
    2022
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant

相似海外基金

Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Discovery Projects
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
  • 批准号:
    2339030
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Continuing Grant
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
  • 批准号:
    DE240100417
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Discovery Early Career Researcher Award
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
  • 批准号:
    2304949
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Post Transition Metal Oxides for Optoelectronic Applications (PRAETORIAN)
用于光电应用的后过渡金属氧化物 (PRAETORIAN)
  • 批准号:
    EP/Y019504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了