CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells

职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术

基本信息

  • 批准号:
    2339030
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

In vitro live cells such as stem cells are powerful models to replicate human (patho)physiology and enable detailed analysis of cell function, cellular mechanisms of action, and responses to interventions and therapeutics. The widespread acceptance of these cell models, coupled with their growing commercial availability and ease of deriving patient-specific cells, have underscored their potential to revolutionize our understanding of human physiology and function. To date, however, limited techniques exist for comprehensive investigation of the properties of such cell models over time, which greatly impedes their translation for physiology investigations, disease modeling, and pharmacology research. This project will address these technical challenges and develop automated lab-on-a-chip platforms for comprehensive chronic monitoring and control of cell physiology. This will be accomplished via innovations in materials, device fabrication, circuit design, software development, and system integration. The research results represent important steps towards the next generation lab-on-a-chip health monitoring and modulation systems. If successful, the outcomes will significantly simplify the operation, expand the possibilities, and create new opportunities in many programs of biomedical research, in which automated lab-on-a-chip devices with reduced human exposure are highly demanded. The education activities will integrate with the technical developments through multidisciplinary training of female and underrepresented students in bioelectronics research, introduction of new undergraduate courses on optoelectronic biomedical systems. Outreach plans involve lectures and designing pedagogical demonstration kits to educate K-12 students as well as active research participation by local high school students.This project will develop and validate automated lab-on-a-chip platforms that allow for direct high-content, real-time, multiparametric interrogation of multiple parallel live cell properties and their interplay at meaningful levels of spatiotemporal precision inside standard cell culture environment. The project includes three research objectives: (1) explore cellular-scale components for crosstalk-free electrical recording, stimulation, and triple-parametric fluorescence recording of in vitro live cell function. The structure-property relationships of those components will be investigated to optimize the device performance. Optical and electrochemical modeling will be performed to yield fundamental insights into their characteristics; (2) develop compact lab-on-a-chip platforms for automated, long-term, multiparametric probing of live cell models under controlled cultivation conditions. The full compatibility with incubator culturing environment is beneficial for work with dangerous pathogens, such as COVID-19, toxic substances, and radioactivity. Advanced hardware and software designs will enable independent control of each modality, fast measurement, and data analysis. This will eliminate the need of significant technical expertise to manually analyze the high-content data generated, dramatically save the time efforts, reduce error, and improve accuracy for the experimenters; (3) validate the platforms via rigorous benchtop measurements and high-content on-chip screening of induced pluripotent stem cells-derived neurons. The performance will be benchmarked against commercial systems. The technology and new knowledge in this project will impact the broad biomedical engineering community, including elucidating disease mechanisms, drug testing, personalized medicine, organs-on-chip.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
体外活细胞(如干细胞)是复制人类(病理)生理学的强大模型,能够详细分析细胞功能、细胞作用机制以及对干预和治疗的反应。这些细胞模型的广泛接受,加上它们日益增长的商业可用性和获得患者特异性细胞的容易性,强调了它们有可能彻底改变我们对人类生理学和功能的理解。然而,到目前为止,存在有限的技术来全面研究这种细胞模型随时间的特性,这极大地阻碍了它们用于生理学研究、疾病建模和药理学研究的转化。该项目将解决这些技术挑战,并开发自动化芯片实验室平台,用于全面的慢性监测和细胞生理学控制。这将通过材料、器件制造、电路设计、软件开发和系统集成方面的创新来实现。研究结果代表了迈向下一代芯片实验室健康监测和调制系统的重要步骤。如果成功的话,这些成果将大大简化操作,扩大可能性,并在许多生物医学研究项目中创造新的机会,其中高度需要减少人体暴露的自动化芯片实验室设备。教育活动将与技术发展相结合,对生物电子研究领域的女生和代表性不足的学生进行多学科培训,开设光电生物医学系统的新本科课程。推广计划包括讲座和设计教学演示套件,以教育K-12学生以及当地高中生积极参与研究。该项目将开发和验证自动化芯片实验室平台,允许直接高内容,实时,在标准细胞培养物内以有意义的时空精度水平对多个平行活细胞特性及其相互作用进行多参数询问环境该项目包括三个研究目标:(1)探索用于无串扰电记录、刺激和体外活细胞功能的三参数荧光记录的细胞尺度组件。将研究这些组分的结构-性质关系以优化器件性能。将进行光学和电化学建模,以获得对其特性的基本见解;(2)开发紧凑的芯片实验室平台,用于在受控培养条件下对活细胞模型进行自动化、长期、多参数探测。与培养箱培养环境的完全兼容性有利于处理危险病原体,如COVID-19、有毒物质和放射性。先进的硬件和软件设计将能够独立控制每种模态、快速测量和数据分析。这将消除对大量技术专业知识的需要,以手动分析所生成的高内容数据,大大节省了时间,减少了误差,并提高了实验人员的准确性;(3)通过严格的台式测量和诱导多能干细胞衍生神经元的高内容芯片筛选来验证平台。性能将以商业系统为基准。该项目的技术和新知识将影响广泛的生物医学工程界,包括阐明疾病机制,药物测试,个性化医疗,器官芯片。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luyao Lu其他文献

Transparent and stretchable metal nanowire composite recording microelectrode arrays
透明可拉伸金属纳米线复合记录微电极阵列
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyuan Chen;Khanh Nguyen;Grant Kowalik;Xinyu Shi;Jinbi Tian;Mitansh Doshi;Bridget R. Alber;Xin Ning;M. Kay;Luyao Lu
  • 通讯作者:
    Luyao Lu
Optical properties of low bandgap copolymer PTB7 for organic photovoltaic applications
用于有机光伏应用的低带隙共聚物 PTB7 的光学特性
  • DOI:
    10.1117/12.2064083
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    U. Huynh;T. Basel;T. Xu;Luyao Lu;Tianyue Zheng;Luping Yu;V. Vardeny
  • 通讯作者:
    V. Vardeny
Status and prospects for ternary organic photovoltaics
三元有机光伏的现状与前景
  • DOI:
    10.1038/nphoton.2015.128
  • 发表时间:
    2015-07-30
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Luyao Lu;Mary Allison Kelly;Wei You;Luping Yu
  • 通讯作者:
    Luping Yu
Polymers for Solar Cells
  • DOI:
    10.1007/978-3-642-29648-2_12
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luyao Lu
  • 通讯作者:
    Luyao Lu
Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research.
  • DOI:
    10.1021/acsabm.3c00131
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Luyao Lu
  • 通讯作者:
    Luyao Lu

Luyao Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luyao Lu', 18)}}的其他基金

High-precision optoelectronic heart-on-a-chip platforms for investigating human cardiac physiology and drug development
用于研究人类心脏生理学和药物开发的高精度光电芯片心脏平台
  • 批准号:
    2131682
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Wireless implantable optoelectronic arrays for untethered high performance cardiac monitoring and modulation
无线植入式光电阵列,用于不受束缚的高性能心脏监测和调制
  • 批准号:
    2011093
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
  • 批准号:
    DE240100417
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Deposition of novel transparent conducting thin films with unusual optoelectronic properties
具有不寻常光电特性的新型透明导电薄膜的沉积
  • 批准号:
    2888596
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
  • 批准号:
    2868548
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Post Transition Metal Oxides for Optoelectronic Applications (PRAETORIAN)
用于光电应用的后过渡金属氧化物 (PRAETORIAN)
  • 批准号:
    EP/Y019504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
  • 批准号:
    EP/X030822/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
  • 批准号:
    2304949
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了