Terahertz Recollisions

太赫兹再碰撞

基本信息

  • 批准号:
    1710639
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical AbstractHigh-energy physicists explore the structure of matter by colliding elementary particles like protons and electrons. In solids, currents--like those generated in a photovoltaic cell after illumination by sunlight--are usually carried by entities called "quasi-particles." When acted on by a force, quasi-particles behave like particles, but actually involve the co-ordinated motions of thousands to millions of atoms. If an atom in a solid were scaled up to be the size of a person, then a quasi-particle would look something like "the wave" in a large, full stadium. The PI's group has recently discovered a method to accelerate and collide quasi-particles about 1 trillion times per second (1 Terahertz). The experimental signature of quasi-particle collisions is a rainbow-like spectrum of light that contains dozens of frequencies, or sidebands, that are equally spaced like the teeth on a comb. Each sideband, carries information about the speed with which the quasiparticles have collided, and the quantum-mechanical properties of the solid through which they have been accelerated before colliding. In this project, the PI's group will carefully analyze both the intensities and polarizations of the sidebands from a variety of electronic materials in order to elucidate the laws that govern the motion of quasiparticles and to search for new phases of strongly-driven matter. Possible applications of the proposed research include faster and more energy efficient optical communications and internet, improved optical clocks that are necessary in the global positioning system, and the ability to rapidly and reversibly tune the properties of materials. This project will support the training of two Ph. D. students and several undergraduates, who will learn a variety of skills that are critical to preserving U. S. competitiveness in the high-technology sector.Technical AbstractThis project addresses one of the grand challenges of 21st century science--how does quantum matter behave when it is driven very far from thermal equilibrium. The goals of this project are to take advantage of new opportunities in the study of strongly-driven matter to (1) develop a method of measuring the Berry curvature of bands in solids, which is critical to understanding the dynamics of quasiparticles; (2) elucidate the nature of quasiparticles in materials in which correlations between electrons are strong, like the parent compounds of high-Tc superconductors; and (3) search for new quantum-mechanical phases near the edges of materials that are driven by strong, time-periodic fields. In order to reach these goals, this project will use the recent discovery of high-order sideband generation (HSG) by the PI's group. Each of the materials of interest will be illuminated by a NIR laser while it is being driven by a strong THz-frequency electric field, and the intensities and polarizations of the resulting HSG spectra will be analyzed. Experiments will be closely coupled with theory to reach the project goals.
高能物理学家通过碰撞基本粒子(如质子和电子)来探索物质的结构。 在固体中,电流--就像太阳光照射后在光伏电池中产生的电流--通常由称为“准粒子”的实体携带。“当受到力的作用时,准粒子的行为就像粒子一样,但实际上涉及成千上万个原子的协调运动。 如果把固体中的原子按比例放大到一个人的大小,那么准粒子看起来就像是一个巨大的体育场中的“波浪”。 PI的团队最近发现了一种方法,可以加速和碰撞准粒子每秒约1万亿次(1太赫兹)。 准粒子碰撞的实验特征是一个彩虹般的光谱,它包含几十个频率或边带,这些频率或边带就像梳子上的齿一样等距,每个边带都携带着准粒子碰撞速度的信息,以及它们在碰撞前被加速的固体的量子力学性质。 在这个项目中,PI的团队将仔细分析各种电子材料的边带的强度和偏振,以阐明准粒子运动的规律,并寻找强驱动物质的新相。 拟议研究的可能应用包括更快,更节能的光通信和互联网,改进全球定位系统所需的光学时钟,以及快速和可逆地调整材料性能的能力。该项目将支持培养两名博士。学生和几个本科生,谁将学习各种技能,是至关重要的,以保持美国。S.技术摘要本项目致力于解决21世纪世纪科学的重大挑战之一--当量子物质远离热平衡时,它是如何表现的。本项目的目标是利用强驱动物质研究中的新机会,(1)开发一种测量固体中能带的Berry曲率的方法,这对理解准粒子动力学至关重要; (2)阐明准粒子的性质,在材料中,电子之间的相关性很强,如高Tc超导体的母体化合物;(3)寻找新的量子力学相附近的边缘材料,由强大的,时间周期性的领域。 为了达到这些目标,这个项目将使用PI小组最近发现的高阶边带产生(HSG)。 每种感兴趣的材料将被NIR激光照射,同时由强THz频率电场驱动,并分析所得HSG光谱的强度和偏振。 实验将与理论紧密结合,以达到项目目标。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temporal and spectral fingerprints of ultrafast all-coherent spin switching
  • DOI:
    10.1038/s41586-019-1174-7
  • 发表时间:
    2019-05-16
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Schlauderer, S.;Lange, C.;Huber, R.
  • 通讯作者:
    Huber, R.
Reconstruction of Bloch wavefunctions of holes in a semiconductor
  • DOI:
    10.1038/s41586-021-03940-2
  • 发表时间:
    2021-11-04
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Costello, J. B.;O'Hara, S. D.;Sherwin, M. S.
  • 通讯作者:
    Sherwin, M. S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Sherwin其他文献

Terahertz power
太赫兹功率
  • DOI:
    10.1038/420131a
  • 发表时间:
    2002-11-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Mark Sherwin
  • 通讯作者:
    Mark Sherwin

Mark Sherwin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Sherwin', 18)}}的其他基金

Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
  • 批准号:
    2333941
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of an Agile Free-Electron-Laser-Powered Pulsed Electron Magnetic Resonance (FEL-EMR) Spectrometer
MRI:开发敏捷自由电子激光驱动脉冲电子磁共振 (FEL-EMR) 能谱仪
  • 批准号:
    2117994
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Colliding quasiparticles to reconstruct their effective Hamiltonians
碰撞准粒子重建其有效哈密顿量
  • 批准号:
    2004995
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Triggered functional dynamics of proteins in biomimetic environments by time-resolved electron paramagnetic resonance at very high magnetic fields
通过极高磁场下的时间分辨电子顺磁共振触发仿生环境中蛋白质的功能动力学
  • 批准号:
    2025860
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
MRI: Development of a single-mode terahertz free electron lasers for research in materials, physics, chemistry and biology
MRI:开发单模太赫兹自由电子激光器,用于材料、物理、化学和生物学研究
  • 批准号:
    1626681
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Time-resolved conformational changes of proteins by very high frequency Gd3+ EPR
通过甚高频 Gd3 EPR 实现蛋白质的时间分辨构象变化
  • 批准号:
    1617025
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Terahertz Electron Hole Recollisions
太赫兹电子空穴碰撞
  • 批准号:
    1405964
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Robust Gd3+ -based spin labels for structural studies of membrane proteins
用于膜蛋白结构研究的基于 Gd3 的稳健自旋标签
  • 批准号:
    1244651
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
MRI: Development of a Free-Electron Laser for Ultrafast Pulsed Electron Paramagnetic Resonance
MRI:开发用于超快脉冲电子顺磁共振的自由电子激光器
  • 批准号:
    1126894
  • 财政年份:
    2011
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Quantum Coherence and Dynamical Instability in Quantum Wells Driven by Intense Terahertz Fields.
强太赫兹场驱动的量子井中的量子相干性和动态不稳定性。
  • 批准号:
    1006603
  • 财政年份:
    2010
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

Terahertz Electron Hole Recollisions
太赫兹电子空穴碰撞
  • 批准号:
    1405964
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了