MRI: Development of a Free-Electron Laser for Ultrafast Pulsed Electron Paramagnetic Resonance
MRI:开发用于超快脉冲电子顺磁共振的自由电子激光器
基本信息
- 批准号:1126894
- 负责人:
- 金额:$ 99.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Development of a Free-Electron Laser for Ultrafast Electron Magnetic ResonanceTechnical abstract: Like nuclear magnetic resonance (NMR), EPR becomes much more powerful at high magnetic fields and frequencies, and in a pulsed rather than continuous wave (cw) modality. The major bottleneck for high-field, high-frequency pulsed EPR has been the absence of electromagnetic sources capable of high frequency (100 GHz), high power (1 kW), high long-term frequency-stability, and pulse-programmability. Supported by a previous MRI grant and an award from the W. M. Keck Foundation, the world's first FEL-powered pulsed EPR spectrometer has been demonstrated at UC Santa Barbara. The most dramatic achievement is extremely rapid spin manipulation-spin ½ electrons have been rotated by 90 degrees in 6 ns at 240 GHz, two orders of magnitude faster than the next fastest 240 GHz spectrometer in the world, which is based on a solid-state source. The major research instrumentation to be developed is a free-electron laser (FEL) that is optimized for electron paramagnetic resonance (EPR) at frequencies between 240 and 500 GHz (corresponding to magnetic fields between 8.5 and 18 T). This development heavily leverages 25 years of infrastructure, investment, institutional commitment, and expertise at UC Santa Barbara. The existing 6 MV electrostatic accelerator will be upgraded and a new free-electron laser (undulator + cavity) will be built. Together, these improvements will increase the peak power available at 240 GHz from 300 W to 10 kW, the repetition rate from 1 Hz to 10 Hz, and also greatly improve the long-term stability and reliability of the system. The new FEL will bring times for 90-degree rotations of spin ½ electrons below 1 ns, enabling resolution of extremely rapid spin relaxation processes. Data acquisition times for pulsed EPR will be reduced by at least a factor of 1000. The new FEL and associated EPR spectrometer will be made available to a national and international user community, and enable transformative studies in materials science, physics, chemistry and molecular biology.Non-technical abstract: The world's brightest source of tunable terahertz radiation will be developed to manipulate electron spins faster than has ever been possible. This ultrafast spin manipulation will enable pathbreaking studies with applications ranging from development of inexpensive solar cells to understanding how protein molecules fit together and move to regulate the flow of energy, information and matter in living organisms.Electrons and atomic nuclei both have a property called spin, which makes them behave like (very tiny) magnets. In nuclear magnetic resonance (NMR), which is the basis for magnetic resonance imaging (MRI), a strong external magnetic field aligns nuclear spins, while powerful pulses of radio-frequency electromagnetic radiation manipulate nuclei to discover otherwise invisible information about neighboring atoms. Electron paramagnetic resonance (EPR), in a fashion similar to NMR, uses an external magnetic field to align electron spins (rather than nuclear spins). Typically, pulses of microwave-frequency electromagnetic radiation manipulate these electrons to learn about local environments over larger neighborhoods. EPR becomes even more powerful when extremely high-frequency terahertz radiation is used.The free-electron lasers (FELs) at the University of California at Santa Barbara (UCSB) are famous as the world's brightest sources of tunable terahertz radiation. Recently, researchers at UCSB demonstrated that one of the UCSB FELs could be used to rotate electron spins 50 times faster than ever before at .25 terahertz. This project will fund the construction of an even more powerful FEL. The new FEL, which will be used by scientists from all over the nation and world, will be 100 times more powerful than the existing one, and will pulse ten times faster, enabling at least 1000 times more rapid acquisition of experimental data. The EPR spectrometer powered by this new FEL will create an unprecedented capability to observe the structure and ultrafast dynamics of molecules, materials and devices at nanometer length scales.
技术摘要:与核磁共振(NMR)一样,EPR在高磁场和高频率下变得更加强大,并且处于脉冲而不是连续波(cw)模式。 高场、高频脉冲EPR的主要瓶颈一直是缺乏能够高频率(100 GHz)、高功率(1 kW)、高长期频率稳定性和脉冲可编程性的电磁源。 由之前的MRI资助和W. M.凯克基金会,世界上第一个自由电子激光供电的脉冲EPR光谱仪已在加州大学圣巴巴拉。 最引人注目的成就是极其快速的自旋操纵-自旋1/2电子在240 GHz下在6 ns内旋转90度,比世界上第二快的240 GHz光谱仪快两个数量级,该光谱仪基于固态源。 要开发的主要研究仪器是一种自由电子激光器(FEL),该激光器在240至500 GHz(对应于8.5至18 T之间的磁场)的频率下针对电子顺磁共振(EPR)进行了优化。 这一发展充分利用了加州大学圣巴巴拉分校25年的基础设施、投资、机构承诺和专业知识。 将对现有的6 MV静电加速器进行升级,并建造新的自由电子激光器(波荡器+腔)。 这些改进将使240 GHz的峰值功率从300 W增加到10 kW,重复频率从1 Hz增加到10 Hz,并大大提高系统的长期稳定性和可靠性。 新的自由电子激光器将使自旋1/2电子的90度旋转时间低于1 ns,从而能够解决极其快速的自旋弛豫过程。 脉冲EPR的数据采集时间将减少至少1000倍。 新的自由电子激光和相关的EPR光谱仪将提供给国家和国际用户社区,并使材料科学,物理,化学和分子生物学的变革性研究成为可能。非技术摘要:世界上最亮的可调谐太赫兹辐射源将被开发出来,以比以往任何时候都更快地操纵电子自旋。这种超快自旋操纵将实现开创性的研究,其应用范围从开发廉价的太阳能电池到了解蛋白质分子如何结合在一起并移动以调节生物体内能量、信息和物质的流动。电子和原子核都有一种称为自旋的性质,这使得它们的行为就像(非常微小的)磁铁。 在核磁共振(NMR)中,这是磁共振成像(MRI)的基础,强大的外部磁场使核自旋对齐,而射频电磁辐射的强大脉冲则操纵原子核以发现有关相邻原子的不可见信息。电子顺磁共振(EPR),以类似于NMR的方式,使用外部磁场来对齐电子自旋(而不是核自旋)。 通常,微波频率电磁辐射的脉冲操纵这些电子,以了解更大社区的局部环境。 在圣巴巴拉的加州大学(UCSB)的自由电子激光器(FEL)是世界上最亮的可调谐太赫兹辐射源,它的功率可以达到1000 W。 最近,UCSB的研究人员证明,其中一个UCSB自由电子激光器可以在0.25太赫兹下使电子自旋旋转速度比以往快50倍。 该项目将为建造更强大的自由电子激光器提供资金。 新的自由电子激光器将被来自全国和世界各地的科学家使用,其功率将比现有的自由电子激光器大100倍,脉冲速度将快10倍,能够以至少1000倍的速度获取实验数据。 由这种新的自由电子激光驱动的EPR光谱仪将创造前所未有的能力,以观察纳米尺度的分子,材料和器件的结构和超快动力学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstruction of Bloch wavefunctions of holes in a semiconductor
- DOI:10.1038/s41586-021-03940-2
- 发表时间:2021-11-04
- 期刊:
- 影响因子:64.8
- 作者:Costello, J. B.;O'Hara, S. D.;Sherwin, M. S.
- 通讯作者:Sherwin, M. S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sherwin其他文献
Terahertz power
太赫兹功率
- DOI:
10.1038/420131a - 发表时间:
2002-11-14 - 期刊:
- 影响因子:48.500
- 作者:
Mark Sherwin - 通讯作者:
Mark Sherwin
Mark Sherwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sherwin', 18)}}的其他基金
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
- 批准号:
2333941 - 财政年份:2024
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
MRI: Development of an Agile Free-Electron-Laser-Powered Pulsed Electron Magnetic Resonance (FEL-EMR) Spectrometer
MRI:开发敏捷自由电子激光驱动脉冲电子磁共振 (FEL-EMR) 能谱仪
- 批准号:
2117994 - 财政年份:2021
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
Colliding quasiparticles to reconstruct their effective Hamiltonians
碰撞准粒子重建其有效哈密顿量
- 批准号:
2004995 - 财政年份:2020
- 资助金额:
$ 99.23万 - 项目类别:
Continuing Grant
Triggered functional dynamics of proteins in biomimetic environments by time-resolved electron paramagnetic resonance at very high magnetic fields
通过极高磁场下的时间分辨电子顺磁共振触发仿生环境中蛋白质的功能动力学
- 批准号:
2025860 - 财政年份:2020
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
MRI: Development of a single-mode terahertz free electron lasers for research in materials, physics, chemistry and biology
MRI:开发单模太赫兹自由电子激光器,用于材料、物理、化学和生物学研究
- 批准号:
1626681 - 财政年份:2016
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
Time-resolved conformational changes of proteins by very high frequency Gd3+ EPR
通过甚高频 Gd3 EPR 实现蛋白质的时间分辨构象变化
- 批准号:
1617025 - 财政年份:2016
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
Robust Gd3+ -based spin labels for structural studies of membrane proteins
用于膜蛋白结构研究的基于 Gd3 的稳健自旋标签
- 批准号:
1244651 - 财政年份:2013
- 资助金额:
$ 99.23万 - 项目类别:
Continuing Grant
Quantum Coherence and Dynamical Instability in Quantum Wells Driven by Intense Terahertz Fields.
强太赫兹场驱动的量子井中的量子相干性和动态不稳定性。
- 批准号:
1006603 - 财政年份:2010
- 资助金额:
$ 99.23万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
MRI: Development of an Agile Free-Electron-Laser-Powered Pulsed Electron Magnetic Resonance (FEL-EMR) Spectrometer
MRI:开发敏捷自由电子激光驱动脉冲电子磁共振 (FEL-EMR) 能谱仪
- 批准号:
2117994 - 财政年份:2021
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
$ 99.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of MRI artifact free beta-Ti alloy
开发 MRI 无伪影 β-Ti 合金
- 批准号:
17H06904 - 财政年份:2017
- 资助金额:
$ 99.23万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MRI: Development of a single-mode terahertz free electron lasers for research in materials, physics, chemistry and biology
MRI:开发单模太赫兹自由电子激光器,用于材料、物理、化学和生物学研究
- 批准号:
1626681 - 财政年份:2016
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
Development of MRI artifact free Au-Pd-Pt-Ti dental alloy
开发 MRI 无伪影 Au-Pd-Pt-Ti 牙科合金
- 批准号:
15H06441 - 财政年份:2015
- 资助金额:
$ 99.23万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of free radical imaging using in vivo DNP-MRI
使用体内 DNP-MRI 开发自由基成像
- 批准号:
25253005 - 财政年份:2013
- 资助金额:
$ 99.23万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
MRI: Development of an Ultra-High Vacuum Cryogen-free Low Temperature Proximal Probe System for the Exploration of Low Dimensional Materials and Nano-devices
MRI:开发超高真空无冷冻剂低温近端探针系统,用于探索低维材料和纳米器件
- 批准号:
1337871 - 财政年份:2013
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
"MRI: Development of a Free-Space Ultrafast Spectroscopy System for Chemistry, Materials Science, and Biophysics Research And Education In The 25-T Split-Coil Helix"
“MRI:在 25-T 分裂线圈螺旋中开发用于化学、材料科学和生物物理学研究和教育的自由空间超快光谱系统”
- 批准号:
1229217 - 财政年份:2012
- 资助金额:
$ 99.23万 - 项目类别:
Standard Grant
Development of MRI artifact-free alloy for biomedical application
开发用于生物医学应用的 MRI 无伪影合金
- 批准号:
21500427 - 财政年份:2009
- 资助金额:
$ 99.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards artifact-free non-invasive renal and hepatic functional MRI: development of an organ-specific navigator-based pCASL sequence with EPI acquisition
迈向无伪影非侵入性肾和肝功能 MRI:通过 EPI 采集开发基于器官特异性导航器的 pCASL 序列
- 批准号:
507778602 - 财政年份:
- 资助金额:
$ 99.23万 - 项目类别:
Research Grants