Using Electrodeposition to Understand the Effects of Composition and Element Segregation on the Physical Properties of Anodes for High Energy-Density Rechargeable Batteries

利用电沉积了解成分和元素偏析对高能量密度可充电电池阳极物理性能的影响

基本信息

  • 批准号:
    1710672
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

PART 1:  NON-TECHNICAL SUMMARYEnergy conversion and storage technology is critical to the operation, maintenance, and development of modern society. The United States now produces over 25 terawatt hours of electricity per year, with the vast majority being provided by non-renewable fuels such as coal, natural gas, and oil. Developing new technologies that are more efficient than existing ones, or technologies that help existing technologies use energy more efficiently, is therefore critical to our future. Over the last few decades, it has become clear that energy storage devices are a key component in a wide range of proposed technologies. The technical requirements vary dramatically based on the specific constraints of each desired application, and as such there is need for a wide range of functional materials, chemistries, and architectures that can be used to build targeted and specific energy storage devices. The research, funded by the Solid State and Materials Chemistry program, focuses on developing non-toxic, inexpensive manufacturing methods for three potential anode materials that could be used in lithium and sodium rechargeable batteries. These materials are known, but how they degrade (and why) is not. Understanding how these materials work and what their key limitations are is the main goal of this study. This is the critical first step toward finding out how to extend the life of these materials and thereby the life of batteries. This Solid State and Materials Chemistry award furthermore enables the principle investigator to conduct outreach activities related to her research involving students at all grade levels as well as the general public and policymakers. For example, the CSU 'Chemistry Club' engages elementary school students, high school students are mentored by the principle investigator and her students in the research lab, the principle investigator gives invited talks about science at local clubs, and she is a board member of the Colorado Clean Energy Cluster, which impacts policy in Colorado directly.PART 2:  TECHNICAL SUMMARYBattery materials that store large amounts of lithium and operate reversibly at the extreme ends of the electrochemical potential range of electrolytes enable high voltage and high energy density battery cells. Among available candidates, elemental alloying materials such antimony and related antimonides possess exceptionally high volumetric capacities and operate at potentials close to the plating of lithium metal, allowing for high theoretical energy density. Nevertheless, they suffer from low reversibility as a result of large changes in their volume during cycling, and poor surface passivation that causes significant degradation of the electrolyte at the anode surface and a subsequent rise in the cell impedance. This work develops direct electrodeposition methods for producing low-cost, high-performance anodes for alkali metal ion (lithium and sodium) rechargeable batteries. The advantage of using electrodeposition is that the composition and morphology of the material can be controlled, and inactive binders are completely eliminated (which greatly aides in the characterization of the functional materials). The research endeavor involves a strategy of synthesizing directly electrodeposited thin films and nanostructures of three key antimonides (nickel, copper, and zinc and animonide) and characterizing them fully to develop a deeper understanding of the lithiation and delithiation reactions that occur as a function of composition, and how these reactions may lead to degradation and ultimately cell failure. Observing the phase formation and elemental composition across films during cycling further aids in the development of a clear model of how these materials work, how they degrade, and ultimately, the development of hypotheses for how to extend cycle life and utility. With this grant the principle investigator also conducts a variety of educational and outreach activities. Besides engaging students at all grade levels in STEM-related activities, she also communicates her findings directly to the general public through invited talks about science at local clubs and as a board member of the Colorado Clean Energy Cluster, which serves to impact policy in Colorado related to the economic development of clean tech companies.
第一部分:非技术性SUMMARY能源转换和储存技术对现代社会的运营、维护和发展至关重要。美国现在每年生产超过25太瓦时的电力,其中绝大多数由煤炭、天然气和石油等不可再生燃料提供。因此,开发比现有技术更高效的新技术,或帮助现有技术更有效地利用能源的技术,对我们的未来至关重要。在过去的几十年里,很明显,储能设备是一系列拟议技术中的关键部件。根据每种应用的具体限制,技术要求有很大的不同,因此需要广泛的功能材料、化学物质和体系结构来构建目标和特定的能量存储设备。这项研究由固态和材料化学计划资助,重点是开发无毒、廉价的三种潜在负极材料的制造方法,这些材料可以用于锂和钠充电电池。这些材料是已知的,但它们是如何降解的(以及为什么)尚不清楚。了解这些材料是如何工作的,以及它们的主要限制是什么,这是本研究的主要目标。这是找出如何延长这些材料的寿命,从而延长电池寿命的关键的第一步。此外,这一固体和材料化学奖还使首席调查员能够开展与她的研究有关的外联活动,涉及所有年级的学生以及普通公众和决策者。例如,加州大学化学俱乐部吸引了小学生,高中生在研究实验室由首席调查员和她的学生指导,首席调查员在当地俱乐部做关于科学的特邀演讲,她是科罗拉多州清洁能源集群的董事会成员,这直接影响了科罗拉多州的政策。第2部分:存储大量锂的技术SUMMARY电池材料,可在电解液的电化学电位范围的极端端进行可逆操作,从而实现高电压和高能量密度电池单元。在现有的候选材料中,元素合金化材料,如锑和相关的锑化物,具有极高的体积容量,并在接近金属锂电镀的电位下运行,从而允许较高的理论能量密度。然而,它们的可逆性较低,这是因为它们在循环过程中体积变化很大,以及表面钝化不佳,导致阳极表面的电解液显著退化,从而导致电池阻抗上升。这项工作开发了直接电沉积方法来生产低成本、高性能的碱金属离子(锂和钠)充电电池的阳极。使用电沉积的优点是可以控制材料的组成和形貌,并且完全消除了不活跃的粘结剂(这大大有助于功能材料的表征)。这项研究工作涉及一种策略,即直接电沉积三种关键的锑化物(镍、铜、锌和阿米诺德)的薄膜和纳米结构,并对其进行全面表征,以加深对作为组成函数发生的锂离子和脱氢反应的理解,以及这些反应如何导致降解并最终导致细胞失效。在循环过程中观察薄膜中的相形成和元素组成进一步有助于开发这些材料如何工作、如何降解的清晰模型,并最终制定如何延长循环寿命和用途的假设。利用这笔赠款,首席调查员还开展了各种教育和外联活动。除了让所有年级的学生参与与STEM相关的活动外,她还通过在当地俱乐部和科罗拉多州清洁能源集群的董事会成员应邀发表关于科学的演讲,直接向公众传达她的发现。科罗拉多州清洁能源集群旨在影响科罗拉多州与清洁技术公司经济发展相关的政策。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of a Sample Transfer Holder to Enable Air-Free X-ray Photoelectron Spectroscopy
实现无空气 X 射线光电子能谱的样品转移支架的设计
  • DOI:
    10.1021/acs.chemmater.0c01895
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Schneider, Jacob D.;Agocs, Daniel B.;Prieto, Amy L.
  • 通讯作者:
    Prieto, Amy L.
Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode
  • DOI:
    10.1039/c9cc00001a
  • 发表时间:
    2019-06-18
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ma, Jeffrey;Prieto, Amy L.
  • 通讯作者:
    Prieto, Amy L.
Electrodeposition as a Powerful Tool for the Fabrication and Characterization of Next-Generation Anodes for Sodium Ion Rechargeable Batteries
电沉积作为下一代钠离子充电电池阳极的制造和表征的有力工具
  • DOI:
    10.1149/2.f09211if
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gimble, Nathan J.;Nieto, Kelly;Prieto, Amy L.
  • 通讯作者:
    Prieto, Amy L.
X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries
  • DOI:
    10.1016/j.jpowsour.2020.229171
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Nathan J. Gimble;Leslie A. Kraynak;J. Schneider;Maxwell C. Schulze;A. Prieto
  • 通讯作者:
    Nathan J. Gimble;Leslie A. Kraynak;J. Schneider;Maxwell C. Schulze;A. Prieto
The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems
  • DOI:
    10.1016/j.jssc.2018.12.053
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Jennifer M. Lee;Rebecca C Miller;Lily J. Moloney;A. Prieto
  • 通讯作者:
    Jennifer M. Lee;Rebecca C Miller;Lily J. Moloney;A. Prieto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Prieto其他文献

Amy Prieto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Prieto', 18)}}的其他基金

CAS-Climate: Identifying and Characterizing the Structures and Physical Properties of Sodiated Intermetallics
CAS-气候:识别和表征钠化金属间化合物的结构和物理性质
  • 批准号:
    2211067
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Molecular Level Understanding of Dynamic Speciation to Inform Complex Reaction Pathways and Control the Rational Synthesis of Ternary Semiconductor Nanoparticles
分子水平上对动态形态的理解,以了解复杂的反应途径并控制三元半导体纳米颗粒的合理合成
  • 批准号:
    2109141
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SusChEM: Structural and Mechanistic Insights into the Enhanced Hydrogen Sorption Properties of Metal Hydride Nanoparticles Made via Solution Reactions
SusChEM:通过溶液反应制备的金属氢化物纳米颗粒增强氢吸附性能的结构和机理见解
  • 批准号:
    1508790
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Solid State Chemistry of Inorganic Materials IX
无机材料固态化学九
  • 批准号:
    1405331
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Energy Storage and Conversion- Coupling the Direct Electrodeposition of Crystalline Intermetallics with Targeted Outreach to Elementary Schools
职业:能量存储和转换 - 将晶体金属间化合物的直接电沉积与有针对性的小学推广相结合
  • 批准号:
    0956011
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
REU Site: Making, Measuring, and Building Devices: Chemistry Applied to Real World Problems
REU 网站:制造、测量和构建设备:化学应用于现实世界问题
  • 批准号:
    1004924
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
NER: Li-ion Batteries: Hierarchical Architectures for Reducing Diffusion Lengths
NER:锂离子电池:减少扩散长度的分层架构
  • 批准号:
    0709412
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Electrodeposition joining of metals and carbon fiber-reinforced plastics
金属和碳纤维增强塑料的电沉积连接
  • 批准号:
    23H01727
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF-BSF: Physical-Chemical Stabilization of Electrodeposition through Fundamental Interfacial Studies
NSF-BSF:通过基础界面研究实现电沉积的物理化学稳定性
  • 批准号:
    2310353
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Fabrication of bulk nanocrystalline high-entropy alloys by electrodeposition and characterization of their deformation behavior
电沉积块体纳米晶高熵合金的制备及其变形行为表征
  • 批准号:
    23KJ1828
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of extraction-electrodeposition method using novel ionic liquids for high efficiency recovery of platinum group metals
开发利用新型离子液体高效回收铂族金属的萃取-电沉积方法
  • 批准号:
    23H02002
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Decoupling electrodeposition from corrosion for precise tuning of metal deposits in high energy batteries
职业:将电沉积与腐蚀解耦,以精确调节高能电池中的金属沉积
  • 批准号:
    2143677
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Study of the Relationship between Titanium Electrodeposition and Coordination State of Titanium Complex Ions in High-Temperature Molten Salts
高温熔盐中钛电沉积与钛络合离子配位态关系的研究
  • 批准号:
    22K14507
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fabrication of high strength and ductile alloys by controlling crystal growth mode in electrodeposition using deep eutectic solvents
使用低共熔溶剂控制电沉积晶体生长模式制备高强度和延展性合金
  • 批准号:
    22K04778
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precise morphological control of silver nanoparticles induced by reversible electrodeposition and its application to innovative color display system
可逆电沉积诱导银纳米粒子的精确形态控制及其在创新彩色显示系统中的应用
  • 批准号:
    22H02154
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards mastering the electrodeposition of lithium in solid-batteries for transport electrification
掌握用于运输电气化的固体电池中锂的电沉积
  • 批准号:
    568661-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Alliance Grants
Engineering and Evaluating the End-Group Assisted Electrodeposition of Conformal Polymer Electrolytes for Ultrathin-Film Batteries
超薄膜电池共形聚合物电解质端基辅助电沉积的工程设计和评估
  • 批准号:
    2146597
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了