Data-driven distributed control of mobile robotic networks: Where machine learning meets game theory
移动机器人网络的数据驱动分布式控制:机器学习与博弈论的结合
基本信息
- 批准号:1710859
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mobile robotic networks; (e.g., fleets of unmanned aerial vehicles) offer expanded capabilities for recognized military uses as well as a wide variety of civilian uses. There are several factors that contribute to their increasing potential and importance. In particular, technological advances have enabled smaller platforms with increased sensing, communication, and processing capabilities. In addition, autonomous operations offer several competitive advantages such as persistent surveillance that exceeds human fatigue limitations or remote operation capabilities without the logistical transport costs for assets and personnel. Intellectual Merit: Distributed control becomes key to fully realize the potentials of mobile robotic networks. Current distributed control paradigms are mainly model-based and inadequate to handle significant uncertainties, including (1) environmental uncertainties; i.e., unforeseeable elements in unstructured environments where mobile robots operate; (2) dynamic uncertainties; i.e., inaccuracies of the physical dynamics of mobile robots. To bridge the gaps, this project will leverage reinforcement learning, an area of machine learning, and game theory, initially developed in economics, to develop a new data-driven (more specifically, model-free) distributed control framework. The developed framework is model-free, fully distributed, autonomous, and its performance is rigorously provable. The framework will significantly improve the autonomy of mobile robots when they face significant environmental uncertainties and dynamic uncertainties especially in long-term missions. Broader Impacts: Successful completion of this research will provide engineering guidelines in analysis, synthesis and prototyping of mobile robotic networks which can effectively operate in unstructured environments. The research findings profoundly impact a variety of engineering disciplines, including scientific data collection, homeland security operations and intelligent transportation systems. The proposed research is interdisciplinary and involves interactions among game theory, machine learning, control, robotic motion planning and distributed algorithms. This will lead to educational and training opportunities that cross traditional disciplinary boundaries for high-school, undergraduate and graduate students in STEM. The collaborations with industrial partners stress the potentials to make an impact beyond academia.
移动机器人网络;(例如,无人驾驶飞行器车队)为公认的军事用途以及各种民用用途提供了扩展的能力。有几个因素促成了它们日益增长的潜力和重要性。特别是,技术进步使小型平台具有增强的传感、通信和处理能力。此外,自主作业还具有一些竞争优势,例如持续监视,超越了人类疲劳限制,或者远程操作能力,而无需为资产和人员提供物流运输成本。智能优势:分布式控制成为充分发挥移动机器人网络潜力的关键。目前的分布式控制范式主要是基于模型的,不足以处理重大的不确定性,包括:(1)环境的不确定性;即移动机器人操作的非结构化环境中不可预见的因素;(2)动态不确定性;例如,移动机器人物理动力学的不准确性。为了弥合差距,该项目将利用最初在经济学中发展起来的强化学习(机器学习的一个领域)和博弈论来开发一个新的数据驱动(更具体地说,无模型)分布式控制框架。开发的框架是无模型的、完全分布式的、自治的,其性能是严格可证明的。该框架将显著提高移动机器人在面临重大环境不确定性和动态不确定性时的自主性,特别是在执行长期任务时。更广泛的影响:这项研究的成功完成将为移动机器人网络的分析、综合和原型设计提供工程指导,这些网络可以在非结构化环境中有效地运行。研究结果深刻地影响了各种工程学科,包括科学数据收集,国土安全操作和智能交通系统。提议的研究是跨学科的,涉及博弈论,机器学习,控制,机器人运动规划和分布式算法之间的相互作用。这将为STEM领域的高中生、本科生和研究生带来跨越传统学科界限的教育和培训机会。与工业伙伴的合作强调了在学术界之外产生影响的潜力。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Data-driven Attack-resilient Gaussian Process Regression for Dynamic Systems
- DOI:10.23919/acc45564.2020.9147328
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Hunmin Kim;Pinyao Guo;Minghui Zhu;Peng Liu
- 通讯作者:Hunmin Kim;Pinyao Guo;Minghui Zhu;Peng Liu
Secure perception-driven control of mobile robots using chaotic encryption
使用混沌加密对移动机器人进行安全的感知驱动控制
- DOI:10.23919/acc50511.2021.9483382
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Xu;Yuan, Zhenyuan;Xu, Siyuan;Lu, Yang;Zhu, Minghui
- 通讯作者:Zhu, Minghui
Scalable distributed algorithms for multi-robot near-optimal motion planning
- DOI:10.1109/cdc40024.2019.9029416
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Guoxiang Zhao;Minghui Zhu
- 通讯作者:Guoxiang Zhao;Minghui Zhu
Data-driven Distributed State Estimation and Behavior Modeling in Sensor Networks
传感器网络中数据驱动的分布式状态估计和行为建模
- DOI:10.1109/iros45743.2020.9340838
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yu, Rui;Yuan, Zhenyuan;Zhu, Minghui;Zhou, Zihan
- 通讯作者:Zhou, Zihan
Pareto optimal multi-robot motion planning
- DOI:10.23919/acc.2018.8431249
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Guoxiang Zhao;Minghui Zhu
- 通讯作者:Guoxiang Zhao;Minghui Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minghui Zhu其他文献
Research on the Impact Mechanism of Economic Policy Uncertainty on Bitcoin Prices
- DOI:
10.54097/fbem.v10i1.10236 - 发表时间:
2023-07 - 期刊:
- 影响因子:0
- 作者:
Minghui Zhu - 通讯作者:
Minghui Zhu
Effects of polarization-reversed EMIC waves on the ring current dynamics
极化反转 EMIC 波对环电流动力学的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Minghui Zhu;Yiqun Yu;Xing Cao;B. Ni;X. Tian;Jinbin Cao;Vania K. Jordanova - 通讯作者:
Vania K. Jordanova
Real-time game theoretic coordination of competitive mobility-on-demand systems
竞争性按需移动系统的实时博弈论协调
- DOI:
10.1109/acc.2013.6580018 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Minghui Zhu;Emilio Frazzoli - 通讯作者:
Emilio Frazzoli
Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO
2
reduction
阐明 CO 2 还原过程中锡酞菁活性位点的反应活性和性质
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Acharjya;Jiacheng Chen;Minghui Zhu;C. Peng - 通讯作者:
C. Peng
Text-guided deep correlation mining and self-learning feature fusion framework for multimodal sentiment analysis
用于多模态情感分析的文本引导深度关联挖掘与自学习特征融合框架
- DOI:
10.1016/j.knosys.2025.113249 - 发表时间:
2025-04-22 - 期刊:
- 影响因子:7.600
- 作者:
Minghui Zhu;Xiaojiang He;Baojie Qiao;Yiming Luo;Zuhe Li;Yushan Pan - 通讯作者:
Yushan Pan
Minghui Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Minghui Zhu', 18)}}的其他基金
Towards Provable Security of Real-world Servers: Where Online Learning Meets Server Retrofitting
实现现实服务器的可证明安全性:在线学习与服务器改造的结合
- 批准号:
2140175 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: New control-theoretic approaches for cyber-physical privacy
职业:网络物理隐私的新控制理论方法
- 批准号:
1846706 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Breakthrough: CPS-Security: Towards Provably Correct Distributed Attack-Resilient Control of Unmanned-Vehicle-Operator Networks
突破:CPS 安全:实现无人驾驶车辆运营商网络的可证明正确的分布式抗攻击控制
- 批准号:
1505664 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
DESC: Type I: Data-driven system-design for sustainable long-lasting distributed infrastructures
DESC:类型 I:数据驱动的系统设计,实现可持续的持久分布式基础设施
- 批准号:
2324873 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A study of a new method for data-driven modal analysis of power systems with power electronics distributed generators as the main power sources
以电力电子分布式发电机为主要电源的电力系统数据驱动模态分析新方法研究
- 批准号:
22K14246 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
CAREER: A Robust and Data-driven Design for Carbon-intelligent Distributed Systems
职业生涯:碳智能分布式系统的稳健且数据驱动的设计
- 批准号:
2045641 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Data-Driven Situational Awareness for Resilient Operation of Distribution Networks with Inverter-based distributed energy resources
合作研究:数据驱动的态势感知,实现基于逆变器的分布式能源的配电网的弹性运行
- 批准号:
2033927 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Data-driven Methods for Integration of Distributed Energy Resources
数据驱动的分布式能源整合方法
- 批准号:
RGPIN-2017-05866 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Data-Driven Situational Awareness for Resilient Operation of Distribution Networks with Inverter-based distributed energy resources
合作研究:数据驱动的态势感知,实现基于逆变器的分布式能源的配电网的弹性运行
- 批准号:
2114442 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Situational Awareness for Resilient Operation of Distribution Networks with Inverter-based distributed energy resources
合作研究:数据驱动的态势感知,实现基于逆变器的分布式能源的配电网的弹性运行
- 批准号:
2033956 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Data-Driven Voltage VAR Optimization Enabling Extreme Integration of Distributed Solar Energy
数据驱动的电压无功优化实现分布式太阳能的极致集成
- 批准号:
1929975 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant