Data-driven adaptive robust operation of PV generation in distribution systems
配电系统中光伏发电的数据驱动自适应鲁棒运行
基本信息
- 批准号:1710923
- 负责人:
- 金额:$ 31.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to develop a novel data-driven decision support system (DSS) to determine efficient short-term operation strategies for accommodating large-scale PV generation and mitigating its adverse effects on distribution network reliability and security. The proposed DSS will 1) improve the spatiotemporal variability and uncertainty quantification for PV generation in distribution networks; 2) determine the accommodated variability and uncertainty boundaries of PV generation to ensure the economic efficiency and security of the distribution networks; 3) propose cost effective dynamic solutions that incorporate the temporal and spatial variability and uncertainty of demand and supply in the distribution networks; 4) capture the interactions among autonomous entities such as microgrids, distributed energy resources (DERs), and controllable demands; with distribution system operator (DSO). This research plan facilitates rapid dissemination of the generated knowledge to the research and education community. Specifically, it promotes innovative collaboration among graduate and undergraduate students to provide effective solutions for the current challenges in the distribution network operation. This project ensures the highest quality of integrated research and education to meet the emerging workforce and educational needs of the U.S. energy sector by introducing new curriculum for undergraduate and graduate programs, promoting interdisciplinary collaboration, recruiting underrepresented minorities and female students, and developing K-12 outreach activities.The specific objectives of this research are as follows. a) develop a scalable data-driven approach that leverages a multi-task deep learning framework to provide improved spatiotemporal uncertainty measures for the large-scale PV generation in the distribution network. b) quantify the flexibility measures as tertiary regulation services and form distributionally adaptive robust optimization problems to quantify the accommodated spatiotemporal variability and uncertainty. c) provide a tight convex relaxation for the non-convex risk-averse short-term operation problem for the unbalanced distribution networks. The non-convexity in feasibility set is as a result of the introduced integer variables for switching and commitment decisions as well as the unbalanced AC power flow constraints. d) develop decentralized optimization framework to capture the spatial interdependence among the dynamic temporal decisions made by the autonomous entities and the DSO.
本研究的目的是开发一种新型的数据驱动的决策支持系统(DSS),以确定高效的短期运行策略,以适应大规模光伏发电,并减轻其对配电网可靠性和安全性的不利影响。建议的决策支持系统将1)改善配电网光伏发电的时空变异性和不确定性量化;2)确定光伏发电适应的变异性和不确定性边界,以确保配电网的经济效率和安全性;3)提出具有成本效益的动态解决方案,包括配电网中供需的时空变异性和不确定性;4)捕捉自治实体之间的相互作用,如微电网、分布式能源(DER)和可控需求;以及(4)与配电系统运营商(DSO)合作。这一研究计划有助于将所产生的知识迅速传播给研究和教育界。具体地说,它促进研究生和本科生之间的创新合作,为当前分销网络运营中的挑战提供有效的解决方案。该项目通过引入本科和研究生课程的新课程,促进跨学科合作,招收代表性不足的少数族裔和女性学生,以及开展K-12外联活动,确保最高质量的综合研究和教育,以满足美国能源行业新兴的劳动力和教育需求。A)开发一种可扩展的数据驱动的方法,该方法利用多任务深度学习框架,为配电网络中的大规模光伏发电提供改进的时空不确定性度量。B)将灵活性措施量化为三级监管服务,并形成分布式自适应稳健优化问题,以量化所适应的时空变异性和不确定性。C)为不平衡配电网的非凸风险规避短期运行问题提供了一个紧凸松弛。可行性集的非凸性是由于引入了开关和投入决策的整数变量以及不平衡的交流潮流约束的结果。D)开发分散优化框架,以捕捉自治实体和数字存储系统所作的动态时间决策之间的空间相互依赖关系。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Online VAR Control for Unbalanced Distribution Networks With Photovoltaic Generation
光伏发电不平衡配电网的分布式在线 VAR 控制
- DOI:10.1109/tsg.2020.2999363
- 发表时间:2020
- 期刊:
- 影响因子:9.6
- 作者:Jiayong Li;Chengying Liu;Mohammad E. Khodayar;Ming-Hao Wang;Zhao Xu;Bin Zhou;Canbing Li
- 通讯作者:Canbing Li
Feasible Dispatch Limits of PV Generation With Uncertain Interconnection of EVs in the Unbalanced Distribution Network
不平衡配电网中电动汽车并网不确定的光伏发电可行调度限制
- DOI:10.1109/tvt.2021.3096459
- 发表时间:2022
- 期刊:
- 影响因子:6.8
- 作者:Feizi, Mohammad Ramin;Khodayar, Mohammad E.;Chen, Bo
- 通讯作者:Chen, Bo
Solar photovoltaic dispatch margins with stochastic unbalanced demand in distribution networks
- DOI:10.1016/j.ijepes.2022.107976
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:M. R. Feizi;Shengfei Yin;M. Khodayar
- 通讯作者:M. R. Feizi;Shengfei Yin;M. Khodayar
Solar photovoltaic generation: Benefits and operation challenges in distribution networks
太阳能光伏发电:配电网的优势和运营挑战
- DOI:10.1016/j.tej.2019.03.004
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Khodayar, Mohammad E.;Feizi, Mohammad Ramin;Vafamehr, Ali
- 通讯作者:Vafamehr, Ali
Dispatchability Limits for PV Generation in Unbalanced Distribution Networks with EVs
- DOI:10.1109/pesgm41954.2020.9281549
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:M. R. Feizi;M. Khodayar
- 通讯作者:M. R. Feizi;M. Khodayar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Khodayar其他文献
Mohammad Khodayar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Khodayar', 18)}}的其他基金
Collaborative Research: Lifelong Human-in-the-Loop Multiagent Learning for Decentralized Restoration of Distribution Systems (LifeGuard)
协作研究:用于配电系统分散恢复的终身人机循环多智能体学习 (LifeGuard)
- 批准号:
2223629 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
EAGER: Integrated Planning and Operation of Electricity-Transportation Networks for Wireless Electric Vehicle Charging
EAGER:电动汽车无线充电的电力交通网络综合规划和运营
- 批准号:
1550448 - 财政年份:2015
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 31.57万 - 项目类别:
Standard Grant
DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
- 批准号:
2245903 - 财政年份:2023
- 资助金额:
$ 31.57万 - 项目类别:
Continuing Grant
Adaptive data-driven secondary control and cyberattack-resilient secondary control for AC microgrids
交流微电网的自适应数据驱动二次控制和抗网络攻击二次控制
- 批准号:
571554-2021 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Alliance Grants
Developing personalized persuasive technologies using an adaptive and data-driven approach
使用自适应和数据驱动的方法开发个性化说服技术
- 批准号:
RGPIN-2022-03689 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Discovery Grants Program - Individual
Developing personalized persuasive technologies using an adaptive and data-driven approach
使用自适应和数据驱动的方法开发个性化说服技术
- 批准号:
DGECR-2022-00377 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Discovery Launch Supplement
Human-informed data-driven development of next-generation T cell vaccine against malaria
以人为本的数据驱动开发下一代抗疟疾 T 细胞疫苗
- 批准号:
10443906 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Human-informed data-driven development of next-generation T cell vaccine against malaria
以人为本的数据驱动开发下一代抗疟疾 T 细胞疫苗
- 批准号:
10756179 - 财政年份:2022
- 资助金额:
$ 31.57万 - 项目类别:
Adaptive data-driven secondary control and cyberattack-resilient secondary control for AC microgrids
交流微电网的自适应数据驱动二次控制和抗网络攻击二次控制
- 批准号:
571554-2021 - 财政年份:2021
- 资助金额:
$ 31.57万 - 项目类别:
Alliance Grants
Data-Driven Mathematical and Computational Modeling of Hepatitis D Infection and Treatment Response
丁型肝炎感染和治疗反应的数据驱动数学和计算模型
- 批准号:
9973575 - 财政年份:2020
- 资助金额:
$ 31.57万 - 项目类别:
Data-Driven Mathematical and Computational Modeling of Hepatitis D Infection and Treatment Response
丁型肝炎感染和治疗反应的数据驱动数学和计算模型
- 批准号:
10326851 - 财政年份:2020
- 资助金额:
$ 31.57万 - 项目类别: