DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
基本信息
- 批准号:2245903
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computer-aided drug design (CADD), including structure-based virtual screening of a large number of available compounds (ligands) for a given drug target, has become an essential component of modern drug discovery. The actual value of the virtual screening relies on the accuracy of the target-ligand binding affinity prediction. It is recognized as a grand challenge for the virtual screening to accurately predict the target-ligand binding structures (molecular geometries) and binding affinities associated with diverse and massive datasets. This project aims to address the grand challenge in development of machine-learning (ML)-CADD models by introducing new, more effective mathematical representations of molecular geometries with the ability to track molecular geometry changes via Ricci curvatures and their associated spectral information. The outcomes of this project will furnish novel, more reliable computational approaches in essential areas of computational drug design, biomolecular modeling, data analysis, dimensionality reduction, and mathematical biology. Moreover, this project will provide graduate and undergraduate students with training in data analysis, biological modeling, algorithm development, and computational drug design. The enhancement of curricula from this project is planned as a continuation of the investigators' teaching-research practice. The new mathematical framework and deep learning architectures are directly integrated into computer software packages to ensure extensive usage by the community of researchers in drug design, biology, computer science, and mathematics. Additionally, the project will help train the next generation of researchers in advanced mathematics, data science, and molecular biology.This project will develop novel low-dimensional representations for biomolecular data analysis from mathematics-based approaches and robustness training data to revolutionize the current practice in structure-based virtual screening. The main objectives are: 1) to introduce molecular shape guided persistent Ricci curvature and, at the same time, to provide local geometry and spectral information to reduce the structural complexity while still maintaining an adequate description of biomolecular interactions; 2) to develop a target-ligand adaptive deep learning protocol for post-docking pose selection, binding affinity prediction, ranking, and estimation of other molecular properties; 3) to extensively validate the proposed methods on a variety of datasets to optimize the mathematical representations and learning networks. Specifically, this project will focus on the development of the proposed models for the virtual screening of phosphodiesterase-2 (PDE2) inhibitors, providing valuable hits of a promising therapeutic strategy for the treatment of various human diseases. A close loop integrating computational-experimental models will further strengthen the robustness and accuracy of the proposed models.; 4) to develop user-friendly software packages and web servers using parallel and GPU architectures for researchers who are not formally trained in advanced mathematics or sophisticated machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机辅助药物设计(CADD),包括对给定药物靶标的大量可用化合物(配体)进行基于结构的虚拟筛选,已成为现代药物发现的重要组成部分。虚拟筛选的实际价值取决于靶-配体结合亲和力预测的准确性。准确预测与各种海量数据集相关的靶-配体结合结构(分子几何)和结合亲和力被认为是虚拟筛选的重大挑战。这个项目旨在通过引入新的、更有效的分子几何的数学表示来解决机器学习(ML)-CADD模型开发中的巨大挑战,该表示能够通过Ricci曲率及其相关的光谱信息来跟踪分子几何的变化。该项目的成果将在计算药物设计、生物分子建模、数据分析、降维和数学生物学等基本领域提供新的、更可靠的计算方法。此外,该项目将为研究生和本科生提供数据分析、生物建模、算法开发和计算药物设计方面的培训。计划加强这一项目的课程,作为调查员教学研究实践的延续。新的数学框架和深度学习架构直接集成到计算机软件包中,以确保研究人员社区在药物设计、生物、计算机科学和数学方面的广泛使用。此外,该项目将帮助培训下一代高级数学、数据科学和分子生物学的研究人员。该项目将从基于数学的方法和稳健性训练数据开发用于生物分子数据分析的新型低维表示法,以彻底改变当前基于结构的虚拟筛选的实践。主要目标是:1)引入分子形状引导的持久Ricci曲率,同时提供局部几何和光谱信息,以降低结构复杂性,同时保持对生物分子相互作用的充分描述;2)开发目标-配体自适应深度学习协议,用于对接后的姿态选择、结合亲和力预测、排序和其他分子性质的估计;3)在各种数据集上广泛验证所提出的方法,以优化数学表示和学习网络。具体地说,该项目将专注于开发拟议的模型,用于虚拟筛选磷酸二酯酶-2(PDE2)抑制剂,为治疗各种人类疾病提供有前途的治疗策略的有价值的成功。整合计算-实验模型的闭环将进一步增强建议模型的稳健性和准确性。4)使用并行和GPU架构为没有接受过高级数学或复杂机器学习正式培训的研究人员开发用户友好的软件包和网络服务器。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction
- DOI:10.1016/j.compbiomed.2023.107250
- 发表时间:2023-07-27
- 期刊:
- 影响因子:7.7
- 作者:Rana,Md Masud;Nguyen,Duc Duy
- 通讯作者:Nguyen,Duc Duy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duc Nguyen其他文献
Examination of the use of complementary and alternative medicine in Central Appalachia, USA.
美国中部阿巴拉契亚地区补充和替代医学的使用情况检查。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.1
- 作者:
Duc Nguyen;P. Gavaza;Leah K. Hollon;R. Nicholas - 通讯作者:
R. Nicholas
Slipped Capital Femoral Epiphysis: Rationale for the Technique of Percutaneous In Situ Fixation
股骨头骨骺滑脱:经皮原位固定技术的基本原理
- DOI:
10.1097/01241398-199005000-00009 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Duc Nguyen;R. Morrissy - 通讯作者:
R. Morrissy
Encapsulation by Directed PISA: RAFT-Based Polymer-Vesiculated Pigment for Opacity Enhancement in Paint Films
- DOI:
10.1002/marc.202100008 - 发表时间:
2021-04-13 - 期刊:
- 影响因子:4.6
- 作者:
Duc Nguyen;Vien Huynh;Hawkett, Brian - 通讯作者:
Hawkett, Brian
Quetiapine Treatment in Youth Is Associated With Decreased Insulin Secretion
青少年喹硫平治疗与胰岛素分泌减少有关
- DOI:
10.1097/jcp.0000000000000118 - 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Y. F. Ngai;Paul V. Sabatini;Duc Nguyen;Jana Davidson;J. Chanoine;A. Devlin;F. Lynn;C. Panagiotopoulos - 通讯作者:
C. Panagiotopoulos
Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass.
细胞色素 bd 编码的嗜蛋白菌和活性氧 (ROS) 清除产甲烷菌在木质纤维素生物质的微需氧-厌氧消化中的协同关联。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:12.8
- 作者:
Zhuoying Wu;Duc Nguyen;T. Y. Lam;H. Zhuang;Shilva Shrestha;L. Raskin;S. Khanal;Po - 通讯作者:
Po
Duc Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duc Nguyen', 18)}}的其他基金
Robust and Reliable Mathematical Models for Biomolecular Data via Differential Geometry and Graph Theory
通过微分几何和图论建立稳健可靠的生物分子数据数学模型
- 批准号:
2151802 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
- 批准号:
2053284 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: Development of New Prototype Tools, and Adaptation and Implementation of Current Resources for a Course in Numerical Methods
合作研究:新原型工具的开发以及数值方法课程现有资源的改编和实施
- 批准号:
0836916 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
- 批准号:
2347957 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
- 批准号:
2347956 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
DMS/NIGMS 2: Deep learning for repository-scale analysis of tandem mass spectrometry proteomics data
DMS/NIGMS 2:用于串联质谱蛋白质组数据存储库规模分析的深度学习
- 批准号:
2245300 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
DMS/NIGMS 1: Viscoelasticity and Flow of Biological Condensates via Continuum Descriptions - How Droplets Coalesce and Wet Cellular Surfaces
DMS/NIGMS 1:通过连续体描述的生物凝聚物的粘弹性和流动 - 液滴如何聚结和润湿细胞表面
- 批准号:
2245850 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
DMS/NIGMS 2: Spatial, Multi-Host Petri Net Models for Zoonotic Disease Forecasting
DMS/NIGMS 2:用于人畜共患疾病预测的空间、多主机 Petri 网络模型
- 批准号:
10797423 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
DMS/NIGMS 1: Multi-timescale stochastic modeling to investigate epigenetic memory in bacteria
DMS/NIGMS 1:用于研究细菌表观遗传记忆的多时间尺度随机模型
- 批准号:
2245816 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
DMS/NIGMS 1: Modeling Microbial Community Response to Invasion: A Multi-Omics and Multifacton
DMS/NIGMS 1:模拟微生物群落对入侵的反应:多组学和多因素
- 批准号:
10794584 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
DMS/NIGMS 2: Regulation of Cellular Stemness during the Epithelial-Mesenchymal Transition (EMT)
DMS/NIGMS 2:上皮-间质转化 (EMT) 期间细胞干性的调节
- 批准号:
2245957 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别: