Suspended High-gain Millimeter-wave Antenna Arrays: Hybrid Fabrication using MEMS and 3D-Printer Technologies

悬挂式高增益毫米波天线阵列:使用 MEMS 和 3D 打印机技术的混合制造

基本信息

  • 批准号:
    1711102
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Today's wireless communications systems operate mostly in the microwave frequencies below 3 GHz, which has become a crowded and limited resource. Yet more than 100 times bandwidth is available in the millimeter-wave spectrum of 30-300 GHz, offering the potential of huge increases in data rates for next generation devices. Currently, there are several challenges for successful realization of millimeter-wave communication systems. One such challenge is that the signal propagation at millimeter-wave frequencies is impaired by severe path loss. Natural approach to counter the increased path loss at higher frequency bands is to use transmitting and receiving beamforming networks with many antennas per terminal. As a result, it is highly desirable to develop high-efficiency and high-gain integrated circuit antenna arrays operating at millimeter-wave frequencies. Potential applications for the proposed arrays include millimeter-wave short-range communication links, satellite communications, radars, remote sensing, security, and medical imaging. This research will not only advance the research of advanced miniaturized antenna arrays but also support curriculum development at The Ohio State University in the area of RF microsystems. The PIs will advise undergraduate researchers through capstone design projects and independent studies intended to harness the unique features of millimeter-wave antennas, electrical characterization of materials, 3D printed meta-material surfaces, and microfabrication processes. Other educational impact includes hands-on experiences to train students in wireless technologies through summer camps and a variety of outreach activities to attract undergraduates and underrepresented students in engineering. One major drawback of current millimeter-wave technologies adopted for integration of arrays on silicon is the low efficiency (5-10%) and consequently low realized gain. Therefore, the central objective of this proposal is to develop scanning arrays on silicon integrated circuits that exhibit radiation efficiency of greater than 85%. Such compact high-efficiency millimeter-wave arrays have not been realized to date. Moreover, steerable millimeter-wave antenna arrays are well suited to meet the needs for next-generation high data-rate communications. This research aims to understand and address fundamental limitations in efficiency of integrated circuit antennas. The proposed approach for increasing low radiation efficiency and low gain is interdisciplinary and utilizes hybrid fabrication approach: a) suspended radiating elements using micro-electro-mechanical systems (MEMS) process, and b) 3D-printed artificial (anisotropic) dielectric layers. By suspending all radiating elements of a phased array in air using MEMS fabrication processes, the lossy silicon substrate is removed. In addition, a 3D-printed dielectric lens or meta-material layer is fabricated above the radiating elements to enhance the scanning volume of the phased array. As a complementary fabrication technique, additive manufacturing such as 3D printing is uniquely suited for millimeter-wave arrays where the wavelengths are in the range of a few millimeters. The integration of antenna with integrated circuits - combined with enhancements in scanning volume, gain, and bandwidth delivered by artificial dielectric layer - provide enormous advantage in miniaturization of the systems and is essential for next-generation active electronic-scanning arrays. This novel and interdisciplinary approach is potentially transformative to integrated circuit antennas.
当今的无线通信系统主要在3GHz以下的微波频率中操作,这已经成为拥挤且有限的资源。然而,在30-300 GHz的毫米波频谱中,可用带宽超过100倍,为下一代设备提供了数据速率大幅增加的潜力。目前,成功实现毫米波通信系统面临着若干挑战。其中一个挑战是毫米波频率下的信号传播受到严重路径损耗的损害。在较高频带处对抗增加的路径损耗的自然方法是使用每个终端具有许多天线的发射和接收波束成形网络。因此,非常需要开发在毫米波频率下操作的高效率和高增益集成电路天线阵列。拟议阵列的潜在应用包括毫米波短程通信链路、卫星通信、雷达、遥感、安全和医学成像。这项研究不仅将推进先进的小型化天线阵列的研究,但也支持课程开发在俄亥俄州州立大学在RF微系统领域。PI将通过顶点设计项目和独立研究为本科研究人员提供建议,旨在利用毫米波天线的独特功能,材料的电气特性,3D打印超材料表面和微加工工艺。其他教育影响包括通过夏令营和各种外联活动来培训学生掌握无线技术的实践经验,以吸引工程专业的本科生和代表性不足的学生。目前用于硅上阵列集成的毫米波技术的一个主要缺点是效率低(5-10%),因此实现的增益低。因此,本提案的中心目标是在硅集成电路上开发辐射效率大于85%的扫描阵列。这种紧凑高效的毫米波阵列迄今尚未实现。此外,可操纵毫米波天线阵列非常适合满足下一代高数据速率通信的需求。本研究旨在了解和解决集成电路天线效率的基本限制。所提出的用于增加低辐射效率和低增益的方法是跨学科的,并且利用混合制造方法:a)使用微机电系统(MEMS)工艺的悬挂式辐射元件,以及B)3D打印的人工(各向异性)电介质层。通过使用MEMS制造工艺将相控阵列的所有辐射元件悬挂在空气中,去除了有损耗的硅衬底。此外,在辐射元件上方制造3D打印的介电透镜或超材料层,以增强相控阵列的扫描体积。作为一种补充制造技术,诸如3D打印的增材制造特别适合于波长在几毫米范围内的毫米波阵列。天线与集成电路的集成-结合人工介电层提供的扫描体积,增益和带宽的增强-在系统的小型化方面提供了巨大的优势,并且对于下一代有源电子扫描阵列至关重要。这种新颖的跨学科方法对集成电路天线具有潜在的变革性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robotically‐controlled antenna measurement system for millimeter‐wave applications
适用于毫米波应用的机器人控制天线测量系统
  • DOI:
    10.1002/mop.32773
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Matos, Carmen;Humanchuk, Jennifer;Ghalichechian, Nima
  • 通讯作者:
    Ghalichechian, Nima
Design, Fabrication and Measurement of a Millimeter Wave Fresnel Lens using Additive Manufacturing
使用增材制造设计、制造和测量毫米波菲涅耳透镜
A High-gain Large-scanning 60 GHz Via-fed Patch Phased Array Antenna
高增益大扫描60 GHz通孔馈电贴片相控阵天线
Fundamental Improvement to the Efficiency of On-Chip mmWave Phased Arrays Using MEMS Suspension
使用 MEMS 悬架从根本上提高片上毫米波相控阵的效率
Robotically Controlled Pattern Measurements of 60 GHz Phased Array Antenna
60 GHz 相控阵天线的机器人控制方向图测量
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nima Ghalichechian其他文献

Nima Ghalichechian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nima Ghalichechian', 18)}}的其他基金

Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300156
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Exploiting Non-linear Behavior of Phase-Change Materials for Millimeter-Wave Applications
职业:理解和利用相变材料的非线性行为用于毫米波应用
  • 批准号:
    2149886
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Exploiting Non-linear Behavior of Phase-Change Materials for Millimeter-Wave Applications
职业:理解和利用相变材料的非线性行为用于毫米波应用
  • 批准号:
    1845370
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Reconfigurable and Low-loss Millimeter-Wave Antennas using MEMS Paraffin Micro-actuators
使用 MEMS 石蜡微执行器的可重构低损耗毫米波天线
  • 批准号:
    1408228
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

四元数gain图的谱及其相关问题研究
  • 批准号:
    12371348
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
肺癌细胞中转录因子NRF2获得性功能的分子机制研究
  • 批准号:
    81172230
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
低功耗集成多级放大器的设计研究
  • 批准号:
    60976028
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
  • 批准号:
    10752274
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
  • 批准号:
    10751760
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Doctoral Dissertation Research: Assessing weight-gain tendencies in a non-human primates
博士论文研究:评估非人类灵长类动物的体重增加趋势
  • 批准号:
    2341173
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Maximizing Coding Gain in Coded Computing
协作研究:CIF:小型:最大化编码计算中的编码增益
  • 批准号:
    2327509
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Neural activity-based candidate gene identification to link eating disorders and drug addiction
基于神经活动的候选基因识别将饮食失调和药物成瘾联系起来
  • 批准号:
    10528062
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
  • 批准号:
    10699504
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
The Renin-Angiotensin System in Air Pollution-Mediated Exacerbation of Obesity.
空气污染介导的肥胖加剧中的肾素-血管紧张素系统。
  • 批准号:
    10654124
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究
  • 批准号:
    10654333
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Effects of per- and polyfluoroalkyl substances on placental features and size at birth
全氟烷基和多氟烷基物质对出生时胎盘特征和大小的影响
  • 批准号:
    10645524
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Functional exploration of a deep Mycobacterium tuberculosis phosphoproteome
结核分枝杆菌深层磷酸蛋白质组的功能探索
  • 批准号:
    10656957
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了