CAREER: Understanding and Exploiting Non-linear Behavior of Phase-Change Materials for Millimeter-Wave Applications

职业:理解和利用相变材料的非线性行为用于毫米波应用

基本信息

  • 批准号:
    1845370
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2021-10-31
  • 项目状态:
    已结题

项目摘要

Future wireless communication systems are expected to support significantly higher data rates. Higher data rates, though, are generally achieved by using higher frequencies. One area of the electromagnetic spectrum that uniquely fits this purpose is called the millimeter-wave band. This band refers to wavelengths in the order of a few millimeters. Specifically, the millimeter-wave band is defined as frequencies between 30 GHz to 300 GHz. Reconfigurability and adaptability is a vital feature of future agile millimeter-wave systems for sensing, imaging, and wireless communications. However, when radio-frequency systems are made reconfigurable, they become lossy neutralizing any gain achieved by reconfiguration. In other words, despite the added functionality, losses (low efficiencies) are the Achilles heel of any radio-frequency reconfigurable system often less discussed. This project intends to address aforementioned fundamental limitation. The proposed research fosters fundamental studies on phase-change materials and their applications in the millimeter-wave domain, specifically, passive imaging sensors. The proposed research can open doors in millimeter-wave and beyond. Applications of the proposed millimeter-wave sensors include medical imaging, navigation, remote sensing, and robotics among a few. In addition to research, the education plan of this project includes: 1) develop new courses at the Ohio State University, 2) undergraduate and K-12 summer program, and 3) participation in outreach program for underserved students from Central Ohio. Broader impacts of this project include broadening participation of underrepresented groups and undergraduate research. Phase-change materials are attractive choices for millimeter-wave reconfiguration as they provide a path to achieve low-loss microsystems. Unique feature of phase-change material is non-linear or abrupt change in physical (i.e. electrical or optical) properties such as permittivity or refractive index with temperature, strain, and current. Metal oxides such as vanadium dioxide belong to a sub-group of phase-change materials that exhibit reversible metal-insulator transition. These materials provide a path for realization of low-loss radio-frequency microsystems. As a result, the main objectives of the proposed research are 1) to understand and analyze the correlation between film deposition conditions and the electrical properties (complex permittivity) of phase-change materials in the millimeter-wave band including losses. Successful demonstration of such unique properties, hinges upon understanding film growth conditions and their impact on crystal structure; 2) study and exploit new strain-induced excitation (activation) techniques on suspended millimeter-wave structures and analyze their impact on device performance; 3) explore novel device architecture, especially, using selected phase-change materials such as vanadium dioxide or other candidates, to reduce or eliminate losses while achieving unique functionalities. A new class of passive imaging arrays (millimeter-wave camera) is expected to exhibit significantly higher responsivity in this band than the state-of-the-art sensors. In addition to the fundamental studies, the proposed work is ambitious but potentially transformative as it challenges the conventional wisdom in designing sensors and dominance of semiconductor-based millimeter-wave detectors. Currently, no acceptable solution is available for millimeter-wave imaging systems operating at the room temperature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的无线通信系统预期支持显著更高的数据速率。然而,更高的数据速率通常通过使用更高的频率来实现。电磁波谱中唯一适合这一目的的一个区域称为毫米波段。这个波段指的是几毫米量级的波长。具体地,毫米波段被定义为30 GHz至300 GHz之间的频率。可重构性和自适应性是未来灵敏毫米波系统用于传感、成像和无线通信的重要特征。然而,当射频系统被重新配置时,它们变得有损,从而抵消了通过重新配置实现的任何增益。换句话说,尽管增加了功能,但损耗(低效率)是任何射频可重构系统的致命弱点,通常很少讨论。本项目旨在解决上述基本限制。拟议的研究促进了对相变材料及其在毫米波领域的应用的基础研究,特别是被动成像传感器。拟议中的研究可以打开毫米波及更高波段的大门。所提出的毫米波传感器的应用包括医学成像、导航、遥感和机器人等。除研究外,该项目的教育计划还包括:1)在俄亥俄州州立大学开发新课程,2)本科和K-12暑期课程,3)参加俄亥俄州中部服务不足学生的外展计划。该项目的更广泛影响包括扩大代表性不足的群体和本科生研究的参与。相变材料是毫米波重构的有吸引力的选择,因为它们提供了实现低损耗微系统的途径。相变材料的独特特征是物理(即电或光学)性质(例如介电常数或折射率)随温度、应变和电流的非线性或突变。诸如二氧化钒的金属氧化物属于表现出可逆金属-绝缘体转变的相变材料的子组。这些材料为实现低损耗射频微系统提供了一条途径。因此,本研究的主要目的是:1)了解和分析薄膜沉积条件与包括损耗在内的毫米波段相变材料的电性能(复介电常数)之间的相关性。这种独特性质的成功证明,取决于了解薄膜生长条件及其对晶体结构的影响; 2)研究和开发新的应变诱导激发(激活)技术,并分析其对器件性能的影响; 3)探索新的器件结构,特别是使用所选择的相变材料,例如二氧化钒或其他候选物,以减少或消除损耗,同时实现独特的功能。一类新的被动成像阵列(毫米波相机)预计将在该波段表现出比最先进的传感器显着更高的响应度。除了基础研究之外,拟议的工作雄心勃勃,但可能具有变革性,因为它挑战了设计传感器的传统智慧和基于半导体的毫米波探测器的主导地位。目前,没有可接受的解决方案可用于在室温下工作的毫米波成像系统。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiphysics simulation of hypersensitive microbolometer sensor using vanadium dioxide and air suspension for millimeter wave imaging
  • DOI:
    10.1007/s00542-020-05031-0
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shangyi Chen;M. Lust;N. Ghalichechian
  • 通讯作者:
    Shangyi Chen;M. Lust;N. Ghalichechian
A Vanadium Dioxide Microbolometer in the Transition Region for Millimeter Wave Imaging
Fundamental Improvement to the Efficiency of On-Chip mmWave Phased Arrays Using MEMS Suspension
使用 MEMS 悬架从根本上提高片上毫米波相控阵的效率
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nima Ghalichechian其他文献

Nima Ghalichechian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nima Ghalichechian', 18)}}的其他基金

Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300156
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Exploiting Non-linear Behavior of Phase-Change Materials for Millimeter-Wave Applications
职业:理解和利用相变材料的非线性行为用于毫米波应用
  • 批准号:
    2149886
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Suspended High-gain Millimeter-wave Antenna Arrays: Hybrid Fabrication using MEMS and 3D-Printer Technologies
悬挂式高增益毫米波天线阵列:使用 MEMS 和 3D 打印机技术的混合制造
  • 批准号:
    1711102
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Reconfigurable and Low-loss Millimeter-Wave Antennas using MEMS Paraffin Micro-actuators
使用 MEMS 石蜡微执行器的可重构低损耗毫米波天线
  • 批准号:
    1408228
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding and exploiting a nitrogen-fixing endophyte for enhancing sustainability and productivity of vertical farming
了解和利用固氮内生菌来提高垂直农业的可持续性和生产力
  • 批准号:
    BB/Z514354/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Understanding and exploiting ligand-driven nanoparticle interfacial phenomena
理解和利用配体驱动的纳米颗粒界面现象
  • 批准号:
    RGPIN-2018-06594
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and exploiting lipid interactions
了解和利用脂质相互作用
  • 批准号:
    RGPIN-2018-04768
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer semiconductors toward efficient photocatalytic H2 production from sea water - understanding and exploiting the presence of ions
聚合物半导体从海水中高效光催化制氢——了解和利用离子的存在
  • 批准号:
    EP/X027449/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Understanding and Exploiting PSMA Expression in Prostate Cancer Through the Development of Aptamer Based-PSMA Targeting
通过开发基于适体的 PSMA 靶向来了解和利用前列腺癌中的 PSMA 表达
  • 批准号:
    486191
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship Programs
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and exploiting the physiology of A. baumannii in the context of infection
了解和利用鲍曼不动杆菌在感染情况下的生理学
  • 批准号:
    486516
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship Programs
Understanding and Exploiting the Favorable Role of Non-Stoichiometric Oxygen in Bulk Metal Oxide Catalyzed Partial Oxidation of Light Alkanes
了解和利用非化学计量氧在块体金属氧化物催化轻质烷烃部分氧化中的有利作用
  • 批准号:
    2128846
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Understanding and Exploiting the Biosynthesis of Diterpenoids in Euphorbia peplus
了解和利用大戟中二萜类化合物的生物合成
  • 批准号:
    506268802
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    WBP Position
Heterobimetallic Catalysts for Carbon Dioxide and Propene Oxide Copolymerization: Exploiting and Understanding Synergy
二氧化碳和环氧丙烷共聚的异双金属催化剂:利用和理解协同作用
  • 批准号:
    2580967
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了