Collaborative Research: Programmable THz Devices Enabled by High-Performance Optical Spatial Modulation for Advanced Imaging and Adaptive Communications

合作研究:通过高性能光空间调制实现高级成像和自适应通信的可编程太赫兹器件

基本信息

  • 批准号:
    1711355
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project will investigate and develop a novel approach based on high-performance wavefront spatial modulation using mesa arrays for efficiently generating tunable and reconfigurable quasi-optical THz components that could not be realized using conventional approaches. Using the proposed approach and components, three advanced THz imaging architectures and adaptive wireless communication links will be further explored and demonstrated. Both imaging and communication at THz region are important technological areas that will generate significant benefit to the society. For example, high-speed THz near-field imaging with subwavelength resolution enabled by reconfigurable coded-apertures may find applications in chemical sensing, medical imaging, and cancer diagnostics. Real-time ultrasensitive passive imaging can be used in astronomy observation and rapid security screening (e.g., detect weak blackbody emission from the human body, environmental scenes). THz spectroscopic imaging using tunable filters will enable advanced biological sensing, and substance/material identification and detection. Finally, adaptive THz wireless communication links (enabled by tunable filters and beam-steering/forming antennas) to be demonstrated will significantly bolster current efforts to develop advanced THz devices, circuits and systems, and may have profound impact on 5G cellular networks, secure military and defense links, the internet of things, chip-to-chip interconnection, 4K TV signal broadcasting, and multi-medium downloading. The project also provides significant educational opportunities for students. The graduate students in this program will be exposed to the full scope of semiconductor physics, electromagnetic wave propagation, advanced imaging, THz system design and testing process, wireless communication, from a single device to the component/circuit/system level. A cooperative education activity will be initiated between the University of Notre Dame and Oregon State University with remote graduate-level lectures. Undergraduate students will be involved through summer and honors thesis research. The PIs will advise and mentor students from underrepresented groups. Finally, this project will also promote science and engineering education among local middle- and high-schools. The objective of this proposal is to explore and demonstrate a novel high-performance optical THz spatial modulation technology based on a mesa-array approach for efficiently achieving tunable and reconfigurable quasi-optical devices that are required in advanced THz imaging and adaptive THz wireless communication systems. This technology would offer sub-wavelength spatial resolution, higher than 100 dB modulation depth, higher speed, and permit high-resolution photo-defined patterns to be virtually generated for devices and components operated at high THz frequencies with multi-functionality. Using this mesa-array technology as a platform, tunable/reconfigurable THz quasi-optical devices, including imaging coded masks, beam steering and forming antennas and universally-tunable filters, with performance and versatility far beyond those realized by conventional approaches will be investigated and demonstrated. Acting on the above investigation, a compact, dynamically programmable THz quasi-optical device/component module will be developed. By employing such modules as building blocks, three advanced THz imaging architectures 1) high-speed THz near-field imaging with sub-wavelength resolution, 2) real-time ultra-sensitive passive THz imaging, and 3) spectrally-resolved THz imaging and prototype adaptive THz wireless communication links will be demonstrated. The project will involve semiconductor physics, THz science and technology, imaging theory, wireless communication, and high-frequency testing and characterization to implement and demonstrate the proposed novel approach for tunable/reconfigurable THz quasi-optical devices. If successful, the project will establish a unique and powerful technology platform for developing tunable and reconfigurable quasi-optical THz devices that cannot be realized using any other conventional approaches.
本项目将研究和开发一种基于高性能波前空间调制的新方法,使用梅萨阵列有效地产生可调谐和可重构的准光学THz组件,这是使用传统方法无法实现的。使用所提出的方法和组件,三个先进的太赫兹成像架构和自适应无线通信链路将进一步探讨和演示。太赫兹波段的成像和通信是重要的技术领域,将产生重大的社会效益。例如,通过可重新配置的编码孔径实现的具有亚波长分辨率的高速THz近场成像可以在化学传感、医学成像和癌症诊断中找到应用。实时超灵敏被动成像可用于天文观测和快速安全筛查(例如,检测来自人体、环境场景的弱黑体发射)。使用可调谐滤波器的THz光谱成像将实现先进的生物传感,以及物质/材料识别和检测。最后,将要演示的自适应太赫兹无线通信链路(由可调谐滤波器和波束转向/成形天线实现)将显着支持当前开发先进太赫兹设备、电路和系统的努力,并可能对5G蜂窝网络、安全产生深远影响军事和国防链路、物联网、芯片到芯片互连、4K电视信号广播和多媒体下载。该项目还为学生提供了重要的教育机会。 该计划的研究生将接触到半导体物理,电磁波传播,先进成像,THz系统设计和测试过程,无线通信的全方位,从单个设备到组件/电路/系统级别。圣母大学和俄勒冈州州立大学将发起合作教育活动,提供远程研究生级别的讲座。本科生将通过夏季和荣誉论文研究参与。PI将建议和指导来自代表性不足群体的学生。最后,该项目还将促进当地中小学的科学和工程教育。 本提案的目的是探索和展示一种新型的高性能光学太赫兹空间调制技术的基础上,台面阵列的方法,有效地实现可调谐和可重构的准光学器件,需要在先进的太赫兹成像和自适应太赫兹无线通信系统。该技术将提供亚波长空间分辨率,高于100 dB的调制深度,更高的速度,并允许为在高THz频率下操作的具有多功能的设备和组件虚拟生成高分辨率的光定义图案。使用这种台面阵列技术作为平台,可调/可重构太赫兹准光学器件,包括成像编码掩模,波束转向和形成天线和通用可调滤波器,性能和多功能性远远超出传统方法实现的将被研究和证明。基于上述研究,我们将开发一种紧凑的、动态可编程的太赫兹准光学器件/组件模块。通过采用这些模块作为构建模块,将展示三种先进的THz成像架构:1)具有亚波长分辨率的高速THz近场成像,2)实时超灵敏被动THz成像,以及3)光谱分辨THz成像和原型自适应THz无线通信链路。该项目将涉及半导体物理,太赫兹科学与技术,成像理论,无线通信,以及高频测试和表征,以实现和演示所提出的可调谐/可重构太赫兹准光学器件的新方法。如果成功,该项目将建立一个独特而强大的技术平台,用于开发使用任何其他传统方法都无法实现的可调谐和可重构准光学THz设备。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optically controlled reconfigurable terahertz waveguide filters based on photo-induced electromagnetic band gap structures using mesa arrays
基于使用台面阵列的光感电磁带隙结构的光控可重构太赫兹波导滤波器
  • DOI:
    10.1364/osac.1.001429
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Ren, Jun;Deng, Yijing;Shi, Yu;Kannegulla, Akash;Wang, Yi-Chieh;Fay, Patrick;Cheng, Li-Jing;Liu, Lei
  • 通讯作者:
    Liu, Lei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li-Jing Cheng其他文献

Electrokinetic ion transport in nanofluidics and membranes with applications in bioanalysis and beyond.
  • DOI:
    10.1063/1.5022789
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Li-Jing Cheng
  • 通讯作者:
    Li-Jing Cheng
Ion and Molecule Transport in Nanochannels.

Li-Jing Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li-Jing Cheng', 18)}}的其他基金

Nanoplasmonics-Enhanced CMOS Fluorescence Sensors for Lens-Free Multiplexed Biomolecular Detection
用于无透镜多重生物分子检测的纳米等离子体增强型 CMOS 荧光传感器
  • 批准号:
    1810067
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaporation-Driven Optofluidic Biosensors using Photonic Crystal Biosilica
合作研究:使用光子晶体生物二氧化硅的蒸发驱动光流控生物传感器
  • 批准号:
    1701329
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
UNS: A functional nanocomposite-based biosensor for real-time ambulatory monitoring of salivary biomarkers
UNS:一种基于功能性纳米复合材料的生物传感器,用于实时动态监测唾液生物标志物
  • 批准号:
    1512816
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
  • 批准号:
    2247722
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
  • 批准号:
    2425711
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335910
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335909
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
  • 批准号:
    2247721
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling
合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础
  • 批准号:
    2214021
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
  • 批准号:
    2318798
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335908
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
  • 批准号:
    2343964
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
  • 批准号:
    2318796
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了