Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical platforms
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新的光学和光机械平台
基本信息
- 批准号:1711451
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Confining light to region of hundreds or even tens of micrometers in high-quality optical microresonators, one can achieve a significant concentration of electromagnetic energy. The confined light becomes much more sensitive to environmental changes, exerts an amplified mechanical force, and can generate significant nonlinear effects even at small light intensities. For this reason, optical microresonators are being actively studied in the context of optical cooling or amplification of mechanical motion, for precision metrology, lasing, ultrasensitive biosensing and other areas. Confinement of light is usually achieved using solid materials, but this project proposes to achieve it using liquid microstructures. The transition to liquid droplet creates significant challenges, but also opens up new opportunities. Firstly, mechanical softness of droplets makes them more receptive than solid materials to the light-induced forces resulting in many orders of magnitude larger mechanical responses and hence increased efficiency of optical cooling or heating. Secondly, liquid droplets allow access to the resonator's interior regions. Because electromagnetic field is orders of magnitude larger inside than outside of the resonator, one can expect the corresponding increase in sensitivity of biosensors based on droplet resonators by several orders of magnitude. Thirdly, use of liquid droplets allows realizing a novel class of photonic molecules with extra strong optical bonds based on droplet-in-droplet structures, in which one or more smaller droplets are encapsulated in a larger droplet. Overall, the objective of this project is to demonstrate the transformative potential of liquid droplet resonators in the fields of optical cooling, lasing, sensing and metrology. The interdisciplinary nature of the project, which includes physicists, and electrical and mechanical engineers, will ensure that graduate and undergraduate students will be exposed to the culture and methodology of different disciplines. In addition, the project will build connections between American and Israeli researchers and students and strengthen the collaboration between American universities participating in the project and Technion, Israel's premiere engineering school. The support for this project is provided within the collaborative NSF-BSF (Binational US-IL Science Foundation) program with participation of the Israel team financed by BSF.This project merges the fields of microfluidics and optical whispering-gallery- mode resonators by proposing the study of the optical and optomechanical properties of novel photonic structures composed of fluid droplets. The mechanical softness of liquid droplets combined with their versatility and tunability will allow the principal investigators to study novel optical and optomechanical effects such as optical cooling of capillary waves, topological energy transfer in the vicinity of exceptional points, and others. The international multidisciplinary team formed for this project will exploit state-of-the-art microfluidic technologies to fabricate different structures of droplets, with each droplet serving as a high-quality photonic resonator. Numerical simulation and theoretical models will be developed to understand the physics associated with the novel structures developed in the project. Experimentalists working on the project will carry out optical characterization of the proposed structures and develop in-depth understanding of their novel optical and optomechanical effects. This research will advance the field of optofluidics by applying state-of-the-art 3D printing technologies to the fabrication of novel microfluidic devices and generation of complex structures of microdroplets. Study of novel photonic structures with unique properties will also open new directions in the field of optical whispering-gallery-mode resonators. The general field of computational electrodynamics will also benefit from this work by taking the T-matrix formalism well outside its nominal domain and applying it to the modes of optically coupled complex structures of liquid droplets.
在高质量的光学微谐振器中,将光限制在数百甚至数十微米的区域内,可以实现电磁能量的显著集中。受限光对环境变化变得更加敏感,施加放大的机械力,并且即使在小的光强度下也可以产生显著的非线性效应。出于这个原因,光学微谐振器正在积极研究的背景下,光学冷却或放大的机械运动,精密计量,激光,超灵敏的生物传感和其他领域。光的限制通常使用固体材料来实现,但该项目建议使用液体微结构来实现。向液滴的转变带来了重大挑战,但也带来了新的机遇。首先,液滴的机械柔软性使它们比固体材料更容易接受光诱导的力,导致许多数量级的更大的机械响应,因此提高了光学冷却或加热的效率。其次,液滴允许进入谐振器的内部区域。由于谐振器内部的电磁场比谐振器外部大几个数量级,因此可以预期基于液滴谐振器的生物传感器的灵敏度相应增加几个数量级。第三,液滴的使用允许实现基于液滴中液滴结构的具有超强光学键的新型光子分子,其中一个或多个较小的液滴被封装在较大的液滴中。总体而言,该项目的目标是展示液滴谐振器在光学冷却,激光,传感和计量领域的变革潜力。该项目的跨学科性质,其中包括物理学家,电气和机械工程师,将确保研究生和本科生将接触到不同学科的文化和方法。此外,该项目还将在美国和以色列的研究人员和学生之间建立联系,并加强参与该项目的美国大学与以色列一流工程学院Technion之间的合作。该项目的支持是由BSF资助的以色列团队参与的NSF-BSF(美国-IL两国科学基金会)合作计划提供的。该项目通过提出对由流体液滴组成的新型光子结构的光学和光机械特性的研究,将微流体和光学回音壁模式谐振器领域融合在一起。液滴的机械柔软性与其多功能性和可调性相结合,将使主要研究人员能够研究新的光学和光机械效应,如毛细波的光学冷却,异常点附近的拓扑能量转移等。为该项目组建的国际多学科团队将利用最先进的微流体技术来制造不同结构的液滴,每个液滴都可以作为高质量的光子谐振器。将开发数值模拟和理论模型,以了解与该项目中开发的新结构相关的物理学。参与该项目的实验学家将对拟议结构进行光学表征,并深入了解其新颖的光学和光学机械效应。这项研究将通过将最先进的3D打印技术应用于新型微流体设备的制造和微滴复杂结构的生成来推进光流体领域。具有独特性能的新型光子结构的研究也将为回音壁模谐振器的研究开辟新的方向。计算电动力学的一般领域也将受益于这项工作,采取T-矩阵形式主义以及其名义域之外,并将其应用到液滴的光耦合复杂结构的模式。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Yang其他文献
Ag-catalyzed synthesis of europium borate Eu(BO2)3 nanowires, growth mechanism and luminescent properties
银催化硼酸铕Eu(BO2)3纳米线的合成、生长机理及发光性能
- DOI:
10.1016/j.materresbull.2010.11.006 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lan Yang;Liqun Zhou;Ying Huang;Ziwei Tang - 通讯作者:
Ziwei Tang
Macrophages at Low-Inflammatory Status Improved Osteogenesis via Autophagy Regulation
低炎症状态的巨噬细胞通过自噬调节改善成骨
- DOI:
10.1089/ten.tea.2021.0015 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lan Yang;Lan Xiao;Wendong Gao;Xin Huang;Fei Wei;Qing Zhang;Yin Xiao - 通讯作者:
Yin Xiao
NaIO3-Induced Mouse Model of Aging-Related Macular Degeneration Displayed Altered Expression Patterns of Sumoylation Enzymes E1, E2 and E3
NaIO3 诱导的衰老相关黄斑变性小鼠模型显示苏酰化酶 E1、E2 和 E3 的表达模式发生改变
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Qian Nie;Xiaodong Gong;Lili Gong;Lan Zhang;Xiangcheng Tang;Ling Wang;Fangyuan Liu;Jia-ling Fu;Jia-Wen Xiang;Yuan Xiao;Zhongwen Luo;Ruili Qi;Zhigang Chen;Yufei Liu;Qian Sun;Wenjie Qing;Lan Yang;Jie Xie;Ming Zou;David Wan-Cheng Li - 通讯作者:
David Wan-Cheng Li
Directly mapping whispering gallery modes in a microsphere through modal coupling and directional emission
通过模态耦合和定向发射直接映射微球中的回音壁模式
- DOI:
10.3788/col20080604.0300 - 发表时间:
2008-04 - 期刊:
- 影响因子:0
- 作者:
Yong Yang;Guo, Guangcan;Lan Yang;Xiao, Yunfeng;Han, Zhengfu;Dong, Chunhua - 通讯作者:
Dong, Chunhua
Investigation on the Stress of Chinese Pediatricians Under the Outbreak of COVID-19
COVID-19疫情下中国儿科医生压力调查
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.5
- 作者:
Lan Yang;Bingbing Zhang;X. Kong;Weifang Zhou;J. Tian;Shi;F. Cheng - 通讯作者:
F. Cheng
Lan Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Yang', 18)}}的其他基金
EFRI NewLAW: Engineering Multiscale Photonic Systems with Broken Time-Reversal Invariance
EFRI NewLAW:工程多尺度光子系统具有破坏的时间反转不变性
- 批准号:
1641109 - 财政年份:2016
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: Thin-Film Chalcogenide Glass Materials for High-Quality Integrated Photonics
合作研究:用于高质量集成光子学的薄膜硫系玻璃材料
- 批准号:
1506620 - 财政年份:2015
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Collaborative Research: Enhanced Raman and Rayleigh scattering in an ultrahigh-Q microresonator for detection, identification and measurement of nanoparticles
合作研究:超高 Q 微谐振器中的增强拉曼和瑞利散射,用于纳米粒子的检测、识别和测量
- 批准号:
1264997 - 财政年份:2013
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
(CAREER) Real-Time Detection, Monitoring and Characterization of Single Nanoparticle/Bioaerosol Using On-Chip Resonators
(职业)使用片上谐振器对单个纳米颗粒/生物气溶胶进行实时检测、监测和表征
- 批准号:
0954941 - 财政年份:2010
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: Laser Treated Sol-Gel Glass for Ultra-High-Quality Photonic Devices
合作研究:用于超高品质光子器件的激光处理溶胶-凝胶玻璃
- 批准号:
0907467 - 财政年份:2009
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant