EFRI NewLAW: Engineering Multiscale Photonic Systems with Broken Time-Reversal Invariance
EFRI NewLAW:工程多尺度光子系统具有破坏的时间反转不变性
基本信息
- 批准号:1641109
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Most physical laws hold true whether time is moving forward or backward ? that is, they are time symmetric. However, violation of time-reversal symmetry underlies many of today?s most important devices ? from nanoscale diodes of integrated electronics to the macroscale isolators and circulators of fiber optical networks. To enable next- generation applications like integrated nano- and micro-photonic circuits, it is crucial to manipulate time-reversal symmetry in optics. This project will investigate time and space symmetries in multi-length-scale photonic systems and explore the exciting applications and technologies that emerge when such symmetries are violated. Our multi-disciplinary team of scientists from five institutions will employ complementary strategies to violate time-reversal symmetry and induce non-reciprocal light transport in nano-, micro-, and macro-scale photonic systems. Our discoveries have the potential to enable a host of new technologies that will ultimately contribute to critical national needs in public health, information processing, computation, and communications. Team members will collaborate with visual and performing artists and develop educational modules for elementary and secondary school students. Each member will involve undergraduate and graduate students from their own and other institutions in their research through cutting-edge online workshops and courses. A key goal is to broaden outreach to underrepresented groups from high schools, community colleges, and minority- serving institutions and create new educational and community resources to advance STEM education.Technical description: In this EFRI NewLAW project, our multi-disciplinary team will employ a holistic approach to explore the emerging frontier of non-reciprocity and time-reversal symmetry breaking in photonic systems ranging from nanoscale plasmonic structures and dielectric micro- resonators to large scale integrated acousto-optic platforms. The research goals of the project will be achieved by synergistic efforts including theoretical investigation, numerical modeling, top-down and bottom-up materials synthesis, and device fabrication and characterization. Using complementary Hermitian and non-Hermitian approaches, the team aims to realize asymmetric and non-reciprocal optical transport in nanoscale, microscale, and macroscale systems. In Hermitian systems, acoustic and optical waves will be coupled in an integrated device in order to experimentally demonstrate how effective photon magnetic fields can influence photon transport. Utilizing the intrinsic phase properties of the acoustic wave, an effective gauge field can be generated for the optical waves, resulting in intriguing magnetic effects. This system will enable investigation of such fascinating effects as the optical analog of Lorentz forces and quantum Hall effect. Moreover, it will provide a new nonreciprocal platform based on a multi-physics, dynamically modulated system. Topologically protected photon edge state and one-way light transport will be demonstrated in large-scale photonic lattices. In non-Hermitian systems, judiciously positioned gain and loss will be investigated to develop technologies that can enable nano and microscale non-reciprocal components and circuits. In particular, the utilization of antilinear symmetries and exceptional points will provide new strategies to compensate or mitigate losses in many physical systems to enable unconventional devices, such as chiral lasers, circulators, unity-efficiency polarizers and on-chip chiral-symmetric optical power limiters. This project will build the theoretical and experimental foundation for new non-reciprocal photonic materials and devices of multiple length-scales, enabling next generation technologies to address critical national needs in information processing and communications.
非技术性描述:无论时间是向前还是向后移动,大多数物理定律都是正确的。即它们是时间对称的。然而,违反时间反演对称性的基础上,许多今天?最重要的设备是什么?从集成电子器件的纳米级二极管到光纤网络的宏观级隔离器和环行器。为了实现下一代应用,如集成纳米和微米光子电路,操纵光学中的时间反演对称性至关重要。这个项目将研究多长度尺度光子系统中的时间和空间对称性,并探索当这种对称性被违反时出现的令人兴奋的应用和技术。我们来自五个机构的多学科科学家团队将采用互补策略来违反时间反演对称性,并在纳米,微米和宏观尺度的光子系统中诱导非互易光传输。我们的发现有可能使一系列新技术成为可能,最终将有助于满足公共卫生,信息处理,计算和通信方面的关键国家需求。团队成员将与视觉和表演艺术家合作,为小学和中学学生开发教育模块。每个成员将通过尖端的在线研讨会和课程,让自己和其他机构的本科生和研究生参与他们的研究。一个关键目标是扩大对高中、社区学院和少数民族服务机构中代表性不足的群体的外联,并创造新的教育和社区资源,以推进STEM教育。技术描述:在这个EFRI NewLAW项目中,我们的跨专业团队将采用整体方法探索非互惠和时间的新兴前沿,光子系统中的反向对称破缺,范围从纳米级等离子体结构和介电微谐振器到大规模集成声光平台。该项目的研究目标将通过协同努力实现,包括理论研究,数值建模,自上而下和自下而上的材料合成,以及器件制造和表征。利用互补的厄米和非厄米方法,该团队的目标是在纳米尺度,微米尺度和宏观尺度系统中实现非对称和非互易的光学传输。在厄米特系统中,声波和光波将在一个集成器件中耦合,以实验证明有效的光子磁场如何影响光子传输。利用声波的本征相位特性,可以为光波产生有效的规范场,从而产生有趣的磁效应。该系统将使研究这些迷人的效果,如光学模拟的洛伦兹力和量子霍尔效应。此外,它将提供一个新的非互易平台的基础上,多物理场,动态调制系统。我们将在大尺度光子晶格中展示拓扑保护的光子边缘态和单向光输运。在非厄米系统中,将研究明智定位的增益和损耗,以开发能够实现纳米和微米级非互易元件和电路的技术。特别是,利用反线性对称性和例外点将提供新的策略来补偿或减轻许多物理系统中的损耗,以实现非常规器件,例如手性激光器,环行器,单位效率偏振器和片上手性对称光功率限制器。该项目将为新型非互易光子材料和多种长度尺度的器件奠定理论和实验基础,使下一代技术能够满足国家在信息处理和通信方面的关键需求。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constant intensity conical diffraction in discrete one-dimensional lattices with charge-conjugation symmetry
- DOI:10.1364/ol.45.000101
- 发表时间:2019
- 期刊:
- 影响因子:3.6
- 作者:Mojgan Dehghani;C. Yuce;T. Kottos;H. Ramézani
- 通讯作者:Mojgan Dehghani;C. Yuce;T. Kottos;H. Ramézani
Implementation of Optimal Thermal Radiation Pumps Using Adiabatically Modulated Photonic Cavities
使用绝热调制光子腔实现最佳热辐射泵
- DOI:10.1021/acsphotonics.1c00896
- 发表时间:2021
- 期刊:
- 影响因子:7
- 作者:Fernández-Alcázar, Lucas J.;Li, Huanan;Nafari, Mona;Kottos, Tsampikos
- 通讯作者:Kottos, Tsampikos
Induced transparency by interference or polarization
- DOI:10.1073/pnas.2012982118
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Changqing Wang;Xuefeng Jiang;William R. Sweeney;Chia-Wei Hsu;Yiming Liu;Guangming Zhao;B. Peng;Mengzhen Zhang;Liang Jiang;A. Stone;Lan Yang
- 通讯作者:Changqing Wang;Xuefeng Jiang;William R. Sweeney;Chia-Wei Hsu;Yiming Liu;Guangming Zhao;B. Peng;Mengzhen Zhang;Liang Jiang;A. Stone;Lan Yang
Electromechanical Brillouin scattering in integrated optomechanical waveguides
- DOI:10.1364/optica.6.000778
- 发表时间:2019-06-20
- 期刊:
- 影响因子:10.4
- 作者:Liu, Qiyu;Li, Huan;Li, Mo
- 通讯作者:Li, Mo
Reflective limiters based on self-induced violation of CT symmetry
- DOI:10.1103/physreva.97.043864
- 发表时间:2018-04
- 期刊:
- 影响因子:2.9
- 作者:E. Makri;Roney Thomas;T. Kottos
- 通讯作者:E. Makri;Roney Thomas;T. Kottos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Yang其他文献
Examining the relationships among teaching assistants’ self-efficacy, emotional well-being and job satisfaction
检验助教自我效能感、情绪健康与工作满意度之间的关系
- DOI:
10.1080/13540602.2023.2265825 - 发表时间:
2023 - 期刊:
- 影响因子:2.7
- 作者:
Lan Yang;John Chi;Di Zhang;Junjun Chen - 通讯作者:
Junjun Chen
Novel brain-targeting 3-n-butylphthalide prodrugs for ischemic stroke treatment
用于治疗缺血性中风的新型脑靶向 3-正丁基苯酞前药
- DOI:
10.1016/j.jconrel.2021.05.045 - 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Honglin Xiang;Qiang Zhang;Yikun Han;Lan Yang;Yan Zhang;Qiang Liu;Zhirong Zhang;Ling Zhang - 通讯作者:
Ling Zhang
A novel antimicrobial peptide derived from membrane-proximal external region of human immunodeficiency virus type 1.
一种源自人类免疫缺陷病毒 1 型近膜外部区域的新型抗菌肽。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Xiaoqiu He;Huayan Zhang;Yuhua Shi;Xin Gong;S. Guan;He Yin;Lan Yang;Yongjiao Yu;Ziyu Kuai;Dongni Liu;Rui Hua;Song Wang;Yaming Shan - 通讯作者:
Yaming Shan
Sodium Iodate-Induced Mouse Model of Age-Related Macular Degeneration Displayed Altered Expression Patterns of Sumoylation Enzymes E1, E2 and E3
碘酸钠诱导的年龄相关性黄斑变性小鼠模型显示苏酰化酶 E1、E2 和 E3 的表达模式发生改变
- DOI:
10.2174/1566524019666190112101147 - 发表时间:
2018 - 期刊:
- 影响因子:2.5
- 作者:
Qian Nie;Xiaodong Gong;Lili Gong;Lan Zhang;Xiangcheng Tang;Ling Wang;Fangyuan Liu;Jia-Ling Fu;Jia-Wen Xiang;Yuan Xiao;Zhongwen Luo;Ruili Qi;Zhigang Chen;Yunfei Liu;Qian Sun;Wenjie Qing;Lan Yang;Jie Xie;Ming Zou;Yuwen Gan;Huimin Chen;David Wan-Cheng Li - 通讯作者:
David Wan-Cheng Li
Investigation on the Stress of Chinese Pediatricians Under the Outbreak of COVID-19
COVID-19疫情下中国儿科医生压力调查
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.5
- 作者:
Lan Yang;Bingbing Zhang;X. Kong;Weifang Zhou;J. Tian;Shi;F. Cheng - 通讯作者:
F. Cheng
Lan Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Yang', 18)}}的其他基金
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical platforms
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新的光学和光机械平台
- 批准号:
1711451 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Thin-Film Chalcogenide Glass Materials for High-Quality Integrated Photonics
合作研究:用于高质量集成光子学的薄膜硫系玻璃材料
- 批准号:
1506620 - 财政年份:2015
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Collaborative Research: Enhanced Raman and Rayleigh scattering in an ultrahigh-Q microresonator for detection, identification and measurement of nanoparticles
合作研究:超高 Q 微谐振器中的增强拉曼和瑞利散射,用于纳米粒子的检测、识别和测量
- 批准号:
1264997 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
(CAREER) Real-Time Detection, Monitoring and Characterization of Single Nanoparticle/Bioaerosol Using On-Chip Resonators
(职业)使用片上谐振器对单个纳米颗粒/生物气溶胶进行实时检测、监测和表征
- 批准号:
0954941 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Laser Treated Sol-Gel Glass for Ultra-High-Quality Photonic Devices
合作研究:用于超高品质光子器件的激光处理溶胶-凝胶玻璃
- 批准号:
0907467 - 财政年份:2009
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
- 批准号:
1741618 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
- 批准号:
1741660 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
- 批准号:
1741673 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
- 批准号:
1741694 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
- 批准号:
1741693 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
- 批准号:
1741565 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
- 批准号:
1741677 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
- 批准号:
1741685 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant