CCSS: Quickest Detection Under Energy Constraints

CCSS:能量限制下最快的检测

基本信息

  • 批准号:
    1711468
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Wireless sensor networks are commonly deployed to monitor abnormal changes in their surrounding environment. These changes typically imply certain activities of severe consequences, such as structure failure or chemical/gas leak, etc. Quickest detection is a framework that focuses on the design of sequential detection algorithms to identify such changes as quickly and reliably as possible so that we can win valuable time to take proper actions. In most of existing works, it is assumed that there is no constraint on how many and when sensors can take samples. This assumption may not hold for many applications in sensor networks whose sensors are powered either by battery with limited energy or renewable energy harvested from the environment. It is important to design novel quickest detection algorithms with energy constraints so that the designed algorithms can be used to detect abnormal activities using sensors powered by battery or renewable energy with a minimal delay. The energy constraints present significant challenges and unique features to quickest detection problems. It is crucial to design adaptive sensing strategies that rely on information extracted from samples taken so far and energy level at the battery to make sample and detection decisions. Towards this end, using tools from optimal stopping theory, the project aims to achieve the following goals: 1) to characterize the optimal detection schemes for problems with additional energy constraints; 2) to understand the performance loss associated with these energy constraints; and 3) to design low-complexity but asymptotically optimal detection schemes. To achieve these goals, the project will focus on two research thrusts. In the first research thrust, the project will focus on scenarios with a hard constraint on the total number of observations that the sensor is allowed to take. The designed algorithms in this thrust will be useful for sensors powered by battery with limited energy. In the second research thrust, the project will focus on scenarios with a stochastic energy constraint. The designed algorithms are suitable for sensors powered by renewable energy.
通常部署无线传感器网络以监视其周围环境中的异常变化。这些变化通常意味着某些严重后果的活动,例如结构故障或化学/气体泄漏等。最快的检测是一个框架,重点是设计顺序检测算法的设计,以尽可能快速,可靠地确定此类变化,以便我们可以赢得宝贵的时间来采取适当的行动。在大多数现有作品中,假定对传感器可以采集样品的数量和何时没有限制。对于传感器网络中的许多应用,这些假设可能无法持有,这些传感器网络中的传感器由电池提供有限的电池供电或从环境中收集的可再生能源供电。重要的是要设计具有能量限制的新型最快检测算法,以便可以使用由电池供电的传感器或可再生能源以最小的延迟来检测设计算法来检测异常活动。能量限制对最快的检测问题提出了重大挑战和独特的特征。设计自适应感测策略至关重要,这些传感策略依赖于迄今为止从迄今为止采集的样品中提取的信息以及电池的能量水平提取的信息来做出样本和检测决策。为此,使用最佳停止理论的工具,该项目旨在实现以下目标:1)表征具有其他能量限制的问题的最佳检测方案; 2)了解与这些能量限制相关的绩效损失; 3)设计低复杂性但渐近最佳检测方案。为了实现这些目标,该项目将重点放在两个研究推力上。在第一个研究作用中,该项目将重点放在方案上,并严格限制了允许传感器进行的观察总数。该推力中设计的算法对于由能量有限的电池供电的传感器将很有用。在第二次研究作用中,该项目将重点放在具有随机能量限制的场景上。设计的算法适用于由可再生能源提供动力的传感器。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Distributed Dual Coordinate Ascent in a Tree Network for Machine Learning
Quickest Change-Point Detection Over Multiple Data Streams via Sequential Observations
Privacy-Accuracy Trade-Off of Inference as Service
Distributed Gradient Descent Algorithm Robust to an Arbitrary Number of Byzantine Attackers
ACTION-MANIPULATION ATTACKS ON STOCHASTIC BANDITS
对随机强盗的行动操纵攻击
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Guanlin;Lai, Lifeng
  • 通讯作者:
    Lai, Lifeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lifeng Lai其他文献

Key Generation using Ternary Tree based Group Key Generation for Data Encryption and Classification
使用基于三叉树的组密钥生成进行数据加密和分类的密钥生成
  • DOI:
    10.5120/ijca2017912883
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikita Gupta;Amit Saxena;Maithili Narasimha;Randy Katz;Alfin Abraham;Lifeng Lai
  • 通讯作者:
    Lifeng Lai
Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk
具有条件风险价值的鲁棒风险敏感强化学习
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyi Ni;Lifeng Lai
  • 通讯作者:
    Lifeng Lai
NEW USES FOR OLD SMARTPHONES
旧智能手机的新用途
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lifeng Lai;Michael Smith;Kewen Gu
  • 通讯作者:
    Kewen Gu
Minimax Optimal Q Learning with Nearest Neighbors
最近邻的 Minimax 最优 Q 学习
  • DOI:
    10.48550/arxiv.2308.01490
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Puning Zhao;Lifeng Lai
  • 通讯作者:
    Lifeng Lai

Lifeng Lai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lifeng Lai', 18)}}的其他基金

CIF: Small: Adversarially Robust Reinforcement Learning: Attack, Defense, and Analysis
CIF:小型:对抗性鲁棒强化学习:攻击、防御和分析
  • 批准号:
    2232907
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CIF: SMALL: kNN methods for functional estimation and machine learning
CIF:SMALL:用于功能估计和机器学习的 kNN 方法
  • 批准号:
    2112504
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Sketching for High Dimensional Data Analysis in IoT
CCSS:协作研究:物联网高维数据分析草图
  • 批准号:
    2000415
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CIF: Small: Adversarially Robust Statistical Inference
CIF:小:对抗性稳健的统计推断
  • 批准号:
    1908258
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CIF: Small: Distributed Statistical Inference with Compressed Data
CIF:小型:使用压缩数据进行分布式统计推断
  • 批准号:
    1717943
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Building Secure Wireless Communication Systems via Physical Layer Resources
职业:通过物理层资源构建安全的无线通信系统
  • 批准号:
    1760889
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1665073
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks
CCSS:协作研究:为无线体域网开发基于物理通道的轻量级身份验证系统
  • 批准号:
    1660140
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1618017
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Sequential Inference and Learning for Agile Spectrum Use
WiFiUS:协作研究:敏捷频谱使用的顺序推理和学习
  • 批准号:
    1660128
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

具有采样约束的最快检测问题在分布式传感器网络中的应用
  • 批准号:
    61601144
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
认知无线电最快速频谱感知机制及其关键技术研究
  • 批准号:
    61201205
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
可预报性研究中最优前期征兆与增长最快初始误差的相似性及其在目标观测中的应用
  • 批准号:
    41230420
  • 批准年份:
    2012
  • 资助金额:
    335.0 万元
  • 项目类别:
    重点项目

相似海外基金

Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334897
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
  • 批准号:
    2236565
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
  • 批准号:
    2112740
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
  • 批准号:
    2112693
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了