Collaborative Research: ATD: Sequential quickest detection and identification of multiple co-dependent epidemic outbreaks
合作研究:ATD:连续最快地检测和识别多个相互依赖的流行病爆发
基本信息
- 批准号:1606505
- 负责人:
- 金额:$ 5.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is key to the development of next generation quantitative algorithms for detection of epidemic outbreaks. The investigators address two focus problems that arise in epidemic surveillance, namely that of quickest detection of (a) spatially and (b) pathogen heterogeneous outbreaks. An early and accurate response is achieved by taking advantage of the co-dependent nature of the corresponding syndromic observations and by appropriate modeling of this dependency. To this end, the investigators develop innovative online quickest detection and sequential classification techniques to analyze multiple correlated data streams undergoing distinct changes. These techniques are assessed through their ability to optimally issue timely outbreak alerts with minimal false alarm rates. Moreover, the investigators address the problem of early detection and identification of an epidemic outbreak by designing a simultaneous min-max change-point detection and classification algorithm of a single data stream with unknown post-disorder characteristics. In this way, the investigators are able to also address the problem of model uncertainty and build robust algorithms. Finally, the investigators combine their expertise by carrying out a multi-faceted comparison of alternative formulations (especially Bayesian versus min-max) for the focus problems, thus creating a model-free state-of-the-art toolkit targeting highly complex bio-surveillance data.Statistical and mathematical methods are essential to address some of the manifold challenges presented by the threat of infectious epidemics. This project is vital to the improvement of public health infrastructure for effective epidemic countermeasures. The investigators build innovative techniques for the early detection and pathogen-type classification of epidemic outbreaks spanning multiple geographic sites by taking advantage of the co-dependent nature of such outbreaks. The developed methods will be directly communicated to public health epidemiologists through outreach activities. Thus, this project is expected to improve the effectiveness of bio-surveillance and contribute to the health and well-being of our communities at large. The interdisciplinary nature of the research activities assists in the training of graduate and undergraduate students and expands the exchange of ideas between Brooklyn College, the Graduate Center of CUNY and UC Santa Barbara. The PIs? techniques constitute an innovative breakthrough in the general methodology of detection and identification of threats in related but distinct streams of observations. Thus, they provide a state-of-the-art platform for threat detection and classification in other areas of engineering such as communications, network intrusion and others.
该项目是开发下一代定量算法检测流行病爆发的关键。 研究人员解决了流行病监测中出现的两个焦点问题,即(a)空间和(B)病原体异质性爆发的最快检测。早期和准确的反应是通过利用相应的症状观察的相互依赖的性质,并通过适当的建模这种依赖性。 为此,研究人员开发了创新的在线快速检测和顺序分类技术,以分析经历不同变化的多个相关数据流。 这些技术通过其以最小误报率及时发布疫情警报的能力进行评估。此外,研究人员通过设计一个同时最小-最大变点检测和分类算法的一个单一的数据流与未知的无序后的特点,解决了早期检测和识别的流行病爆发的问题。 通过这种方式,研究人员也能够解决模型不确定性的问题,并建立强大的算法。最后,研究人员结合联合收割机他们的专业知识,进行多方面的比较替代配方(特别是贝叶斯与最小-最大)的重点问题,从而创建一个无模型的国家的最先进的工具包,针对高度复杂的生物监测data.Statistical和数学方法是必不可少的,以解决一些由传染病流行病的威胁提出的多方面的挑战。该项目对于改善公共卫生基础设施以有效防治流行病至关重要。研究人员建立了创新的技术,通过利用这种爆发的相互依赖性,对跨越多个地理位置的流行病爆发进行早期检测和病原体类型分类。将通过外展活动将制定的方法直接传达给公共卫生流行病学家。因此,该项目预计将提高生物监测的有效性,并为我们整个社区的健康和福祉做出贡献。研究活动的跨学科性质有助于培养研究生和本科生,并扩大布鲁克林学院,纽约市立大学和加州大学圣巴巴拉研究生中心之间的思想交流。 私家侦探?这些技术是在相关但不同的观测流中探测和识别威胁的一般方法方面的创新突破。因此,它们为通信、网络入侵等其他工程领域的威胁检测和分类提供了最先进的平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olympia Hadjiliadis其他文献
A Speed-based Estimator of Signal-to-Noise Ratios
- DOI:
10.1007/s11009-025-10150-0 - 发表时间:
2025-03-31 - 期刊:
- 影响因子:1.000
- 作者:
Yuang Song;Olympia Hadjiliadis - 通讯作者:
Olympia Hadjiliadis
Olympia Hadjiliadis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olympia Hadjiliadis', 18)}}的其他基金
Collaborative Research: ATD: Sequential quickest detection and identification of multiple co-dependent epidemic outbreaks
合作研究:ATD:连续最快地检测和识别多个相互依赖的流行病爆发
- 批准号:
1222526 - 财政年份:2012
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Sequential Detection and Classification in 3D Computer Vision
3D 计算机视觉中的顺序检测和分类
- 批准号:
0929317 - 财政年份:2009
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 5.35万 - 项目类别:
Standard Grant