Collaborative Research: Statistical Inference Using Random Forests and Related Methods

合作研究:使用随机森林和相关方法进行统计推断

基本信息

  • 批准号:
    1712041
  • 负责人:
  • 金额:
    $ 11.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This project seeks to develop methods to quantify uncertainty in machine learning algorithms and to incorporate machine learning and statistical inference. Machine learning has been enormously successful at using data to make predictions; it is used in an extensive range of applications from handwriting recognition to high frequency trading to driverless cars and personalized medicine. However, while machine learning algorithms make good predictions, they tell humans very little about how those predictions were arrived at: What were the important factors? How did they affect the prediction? They also don't distinguish predictions for which there is a lot of information about the probability of different outcomes (even if that covers a wide range) from those where very little information is available. For example, a machine learning algorithm may very accurately predict whether a person is likely to develop diabetes, but provides little if any information regarding how that person might lower his or her risk. This project will build on initial mathematical theory to develop methods to explain how Random Forests arrive at their predictions and how statistically confident those predictions are, and produce ways to link machine learning methods to other statistical models.This project seeks to develop methods to quantify uncertainty in machine learning algorithms and to incorporate machine learning and statistical inference. The project will extend on a theoretical framework representing Random Forests as U-statistics to produce a practical implementation of statistical uncertainty quantification in machine learning. In particular, it will improve on methods to estimate sample variability in Random Forest predictions, develop computationally efficient screening tools for covariate and interaction selection, and incorporate ensemble methods as non-parametric terms in partially-linear models while retaining statistical inference via a modified boosting algorithm. These methods will be demonstrated on a citizen science data base in ornithology and in various biomedical applications.
这个项目寻求开发方法来量化机器学习算法中的不确定性,并将机器学习和统计推理结合起来。机器学习在使用数据进行预测方面取得了巨大的成功;它被广泛应用于从手写识别到高频交易到无人驾驶汽车和个性化医疗的广泛应用。然而,尽管机器学习算法做出了很好的预测,但它们很少告诉人类这些预测是如何得出的:重要因素是什么?他们是如何影响预测的呢?他们也不会区分那些有大量关于不同结果概率的信息的预测(即使这涵盖的范围很广)和那些信息很少的预测。例如,机器学习算法可以非常准确地预测一个人是否可能患上糖尿病,但提供的关于该人如何降低风险的信息即使有,也很少。这个项目将建立在最初的数学理论的基础上,开发方法来解释随机森林如何得出他们的预测,以及这些预测在统计上的可信度有多高,并产生将机器学习方法与其他统计模型联系起来的方法。这个项目寻求开发方法来量化机器学习算法中的不确定性,并将机器学习和统计推理结合起来。该项目将扩展将随机森林表示为U-统计的理论框架,以产生机器学习中统计不确定性量化的实际实施。特别是,它将改进随机森林预测中估计样本变异性的方法,开发用于协变量和交互选择的计算高效的筛选工具,并将集成方法作为部分线性模型中的非参数项,同时通过改进的Boosting算法保留统计推断。这些方法将在鸟类学的公民科学数据库和各种生物医学应用中进行演示。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of Advanced NBA Metrics
NBA 高级指标研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fulker, Zach;Folta, Tyler;Mentch, Lucas
  • 通讯作者:
    Mentch, Lucas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucas Mentch其他文献

An international multi-cohort investigation of self-reported sleep and future depressive symptoms in older adults
一项针对老年人自我报告睡眠和未来抑郁症状的国际多队列研究
  • DOI:
    10.1038/s41598-025-07864-z
  • 发表时间:
    2025-07-04
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Meredith L. Wallace;Nina Oryshkewych;Sanne J.W. Hoepel;Daniel J. Buysse;Lucas Mentch;Meryl A. Butters;Katie L. Stone;Kristine Yaffe;Lisa L. Barnes;Andrew S. Lim;Kristine E. Ensrud;Misti L. Paudel;Annemarie Luik
  • 通讯作者:
    Annemarie Luik
mHealth Physical Activity and Patient-Reported Outcomes in Patients with Inflammatory Bowel Diseases: Cluster Analysis (Preprint)
炎症性肠病患者的 mHealth 身体活动和患者报告的结果:聚类分析(预印本)

Lucas Mentch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucas Mentch', 18)}}的其他基金

Black-Box Science: Ideas and Insights for Learning-Based Statistical Inference
黑盒科学:基于学习的统计推断的想法和见解
  • 批准号:
    2015400
  • 财政年份:
    2020
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 11.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了