Novel Topological States in Correlated Quantum Systems
相关量子系统中的新颖拓扑态
基本信息
- 批准号:1712128
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research and education in understanding novel quantum states of matter in solid-state materials. At low temperatures, quantum mechanics can bring materials into states of matter that have no classical analog. Topological states of matter are such novel quantum states of matter, and they exhibit striking new physical properties. For example, charge carriers in some topological states behave as if they were a fraction of an electron, and their properties can be exploited to build robust quantum computers.The thrusts of the research activities include: 1) Developing a new theoretical framework to systematically understand topological states and developing new computational techniques to simulate these states in a reliable fashion. 2) Applying these techniques to investigate topological states and their physical properties in real materials. 3) Developing guiding principles helpful in searching for new topological states in materials.This project will generate knowledge and computational methods needed for advances in quantum material science and quantum technology. The educational activities include developing pedagogical courses, lectures, and journal-club series for undergraduate and graduate students, with emphasis on the new states of matter discovered in modern condensed matter physics. As an outreach activity, an interactive website will be created to disseminate teaching materials and to demonstrate topological phenomena, with the aim of sparking general interest in science and technology.TECHNICAL SUMMARYThis award supports theoretical research and education in understanding topological quantum states of matter. Very rich classes of correlation-driven topological phases have been predicted theoretically; however, the existence of only few of them has been confirmed in real materials. The relevant challenges are the limitations of currently available theoretical and numerical methods for correlated quantum systems, as well as the lack of physical guiding principles to direct the search for many correlated topological states. This project addresses both these challenges.The research activities comprise three main thrusts: 1) The PI will further develop a symmetric tensor network framework and numerical algorithms suitable for investigating correlated topological phases. The tensor network can be viewed as a new language for quantum many-body physics capable of capturing topological properties of quantum states. 2) By applying this framework, the PI will search for model systems that realize correlation-driven topological phases, including models for correlated transition-metal materials. In addition, excitation properties of candidate topological materials will be computed and compared with experiments. 3) The PI will develop symmetry-based guiding principles that are independent of microscopic details, aiding the search for topological states in materials.The research is closely connected to quantum information science and algebraic topology in mathematics, and it could bring new insight in these disciplines. The educational activities include developing pedagogical courses, lectures, and journal-club series for undergraduate and graduate students, with emphasis on the new states of matter discovered in modern condensed matter physics. The PI will develop and maintain an interactive website hosting research and teaching materials, which will include demonstrations of topological phenomena in condensed matter physics and tensor networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结该奖项支持在理解固态材料中物质的新量子态方面的理论研究和教育。在低温下,量子力学可以使材料进入没有经典模拟的物质状态。物质拓扑态就是这样一种新颖的物质量子态,它们表现出惊人的新物理性质。例如,在某些拓扑状态下,电荷载流子的行为就像是电子的一部分,利用它们的性质可以构建强大的量子计算机。研究活动的重点包括:1)发展新的理论框架,系统地理解拓扑状态,并发展新的计算技术,以可靠的方式模拟这些状态。2)应用这些技术研究真实的材料的拓扑态及其物理性质。3)开发有助于寻找材料中新拓扑状态的指导原则。本项目将产生量子材料科学和量子技术进步所需的知识和计算方法。教育活动包括为本科生和研究生开发教学课程,讲座和期刊俱乐部系列,重点是现代凝聚态物理学中发现的新物质状态。作为一项推广活动,将建立一个互动网站,以传播教学材料和演示拓扑现象,目的是激发公众对科学和技术的兴趣。技术概述该奖项支持理解物质拓扑量子态的理论研究和教育。理论上已经预测了非常丰富的相关驱动拓扑相,然而,在真实的材料中,只有少数几种相关驱动拓扑相的存在得到了证实。相关的挑战是目前可用的相关量子系统的理论和数值方法的局限性,以及缺乏物理指导原则来指导许多相关的拓扑状态的搜索。该项目旨在解决这两个挑战。研究活动包括三个主要方面:1)PI将进一步开发对称张量网络框架和适用于研究相关拓扑相位的数值算法。张量网络可以被看作是量子多体物理学的一种新的语言,能够捕捉量子态的拓扑性质。2)通过应用这个框架,PI将搜索实现相关驱动拓扑相的模型系统,包括相关过渡金属材料的模型。此外,候选拓扑材料的激发特性将被计算并与实验进行比较。3)PI将开发独立于微观细节的基于量子力学的指导原则,帮助寻找材料中的拓扑状态。该研究与数学中的量子信息科学和代数拓扑学密切相关,可以为这些学科带来新的见解。教育活动包括为本科生和研究生开发教学课程,讲座和期刊俱乐部系列,重点是现代凝聚态物理学中发现的新物质状态。PI将开发和维护一个交互式网站,用于托管研究和教学材料,其中将包括凝聚态物理和张量网络中拓扑现象的演示。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets
- DOI:10.1126/sciadv.abb9379
- 发表时间:2020-07
- 期刊:
- 影响因子:13.6
- 作者:T. Tartaglia;Joseph N. Tang;J. Lado;F. Bahrami;M. Abramchuk;G. McCandless;Meaghan C. Doyle;K. Burch;Ying Ran;J. Chan;F. Tafti
- 通讯作者:T. Tartaglia;Joseph N. Tang;J. Lado;F. Bahrami;M. Abramchuk;G. McCandless;Meaghan C. Doyle;K. Burch;Ying Ran;J. Chan;F. Tafti
Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals
- DOI:10.1038/s41567-022-01898-0
- 发表时间:2022-03
- 期刊:
- 影响因子:19.6
- 作者:Yu-Xuan Wang;Xin-Yue Zhang;Chunhua Li;Xiaohan Yao;Ruihuan Duan;Thomas Graham;Zheng Liu;F. Tafti;D. Broido;Ying Ran;B. Zhou
- 通讯作者:Yu-Xuan Wang;Xin-Yue Zhang;Chunhua Li;Xiaohan Yao;Ruihuan Duan;Thomas Graham;Zheng Liu;F. Tafti;D. Broido;Ying Ran;B. Zhou
Engineering chiral topological superconductivity in twisted Ising superconductors
- DOI:10.1103/physrevb.106.125136
- 发表时间:2022-06
- 期刊:
- 影响因子:3.7
- 作者:Xiao-Pei Hu;Ying Ran
- 通讯作者:Xiao-Pei Hu;Ying Ran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Ran其他文献
658 emKLEBSIELLA PNEUMONIAE/em TRANSLOCATION INDUCED LIVER TH17 CELL RESPONSE VIA CCL20 IN PRIMARY BILIARY CHOLANGITIS
658 肺炎克雷伯菌/通过原发性胆汁性胆管炎中 CCL20 诱导的肝 TH17 细胞应答的易位
- DOI:
10.1016/s0016-5085(23)03924-0 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:25.100
- 作者:
Xiaoyi Wang;Hui Yang;hongyu Chu;Xue Zhang;Jiwen Li;Zhen Yang;Simin Zhou;Ying Ran;Long Li;Bangmao Wang;Lu Zhou - 通讯作者:
Lu Zhou
Experimental determination and thermodynamic optimization of Nb-Al-Y ternary system
铌铝钇三元系的实验测定与热力学优化
- DOI:
10.1016/j.jallcom.2024.175195 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:6.300
- 作者:
Jingxian Hu;Dan Zhang;Ying Ran;Xinming Wang;Xuemei Ouyang;Fucheng Yin;Ya Liu - 通讯作者:
Ya Liu
Synthesis of aryl substituted indanones and indenes via a highly efficient ligand-free palladium-catalyzed Suzuki coupling process
通过高效无配体钯催化 Suzuki 偶联工艺合成芳基取代的茚满酮和茚
- DOI:
10.3998/ark.5550190.p009.627 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yuming Song;Ya;Min;Jingping Qu;Hong Hu;X. Lang;Shan Xue;Ying Ran;Shixuan Xinb - 通讯作者:
Shixuan Xinb
Tu1590 ANTI-GP210-POSITIVE PATIENTS WITH PRIMARY BILIARY CHOLANGITIS FULFILLED RESPONSE CRITERIA BUT NOT ACHIEVED NORMAL LIVER FUNCTION MAY HAVE THE RISK OF DISEASE PROGRESSION
- DOI:
10.1016/s0016-5085(23)04325-1 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Xue Zhang;Xiaoyi Wang;Hui Yang;Guixian Ji;Zhen Yang;Jiwen Li;Zongze Han;Yujie Zhang;Jingwen Zhao;Weilong Zhong;Yanni Li;Long Li;Ying Ran;Bangmao Wang;Zhou Lu - 通讯作者:
Zhou Lu
Spin liquids, exotic phases and phase transitions
自旋液体、奇异相和相变
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ying Ran - 通讯作者:
Ying Ran
Ying Ran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Ran', 18)}}的其他基金
CAREER: Novel Quantum Hall and Correlation Physics in Topological Band Structures
职业:拓扑能带结构中的新型量子霍尔和相关物理
- 批准号:
1151440 - 财政年份:2012
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
相似海外基金
Exploring Topological States in 2D Magnetic Materials
探索二维磁性材料的拓扑状态
- 批准号:
2882195 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
Exploring Emergent Magnetic Topological States in Three-Dimensional Magnetic Topological Insulator Multilayers
探索三维磁拓扑绝缘体多层中的涌现磁拓扑态
- 批准号:
2241327 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Electronic states of artificially-stacked atomic-layer thinfilms with Rashba effect and topological electronic states
具有Rashba效应的人工堆叠原子层薄膜的电子态和拓扑电子态
- 批准号:
23H01853 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control of topological phases and development of high-efficiency spin current sources using topological surface states
利用拓扑表面态控制拓扑相并开发高效自旋电流源
- 批准号:
23K04576 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Paired Radical States in Molecular Wires: 1D Topological Insulators and Beyond
分子线中的成对自由基态:一维拓扑绝缘体及其他
- 批准号:
2241180 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Investigation of Nonequilibrium States and Photoinduced Transitions in Topological Superlattices
拓扑超晶格中非平衡态和光致跃迁的研究
- 批准号:
2247363 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Excitonic topological states investigated by laser photoemission spectroscopy
激光光电子能谱研究激子拓扑态
- 批准号:
23K13041 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Relationship between crystal shapes and bound states/charges at the boundaries of topological insulators
晶体形状与拓扑绝缘体边界处的束缚态/电荷之间的关系
- 批准号:
22K18687 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Phase transitions, criticality and non-trivial topological states in non-equilibrium driven-dissipative systems using analytical methods and tensor ne
使用分析方法和张量 ne 的非平衡驱动耗散系统中的相变、临界性和非平凡拓扑态
- 批准号:
2731618 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
Topological and critical states of matter in strongly correlated electronic systems
强相关电子系统中物质的拓扑和临界状态
- 批准号:
RGPIN-2019-04321 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual