Identification and Statistical Inference in Graphical Models with Feedback and Latent Variables
具有反馈和潜变量的图模型中的识别和统计推断
基本信息
- 批准号:1712535
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last decade has seen great advances in scientific experimentation. In biology, for instance, it has become routine to collect complex data that simultaneously quantify the levels of expression of many genes or proteins. This project addresses the development of statistical methodology that allows processing of such data to obtain insights on cause-effect relationships among the units in the studied system. Specifically, the proposed research addresses two key challenges, namely, how to tackle problems in which some important variables remain unobserved, and how to cope with the presence of causal feedback loops. The research develops statistical techniques to infer cause-effect relationships and expands our understanding of which conclusions may possibly be reached under imperfect information.Both feedback and latent variables bring about great challenges in graphical modeling because, in their presence, consideration of conditional independence is no longer sufficient to characterize and compare models. This project focuses on linear models that allow for refined modeling of feedback loops and/or the effects of latent variables. The PI will develop criteria for parameter identifiability, which is no longer guaranteed with feedback or latent variables. The work will also determine conditions for when a model is of expected dimension as given by a parameter count. Knowledge of dimension is needed for instance when setting degrees of freedom in statistical tests. Next, the project will lead to a better understanding of constraints other than conditional independence. Finally, the PI will develop new model selection methods in Gaussian as well non-Gaussian models.
在过去的十年里,科学实验取得了巨大的进步。 例如,在生物学中,收集同时量化许多基因或蛋白质表达水平的复杂数据已经成为常规。 该项目致力于统计方法的发展,允许处理这些数据,以了解研究系统中各单位之间的因果关系。 具体来说,拟议的研究解决了两个关键的挑战,即,如何解决一些重要的变量仍然未观察到的问题,以及如何科普因果反馈回路的存在。 该研究开发了统计技术来推断因果关系,并扩大了我们的理解,可能会得出结论下不完美的information.Both反馈和潜变量带来了巨大的挑战,在图形建模,因为在他们的存在,考虑条件独立性不再足以表征和比较模型。 这个项目的重点是线性模型,允许反馈回路和/或潜在变量的影响的精细建模。 PI将制定参数可识别性的标准,这不再通过反馈或潜变量来保证。 这项工作还将确定当模型具有由参数计数给出的预期尺寸时的条件。 例如,在统计检验中设置自由度时,需要维度知识。 接下来,该项目将导致更好地理解条件独立性以外的约束。 最后,PI将在高斯和非高斯模型中开发新的模型选择方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nested covariance determinants and restricted trek separation in Gaussian graphical models
高斯图模型中的嵌套协方差行列式和受限跋涉分离
- DOI:10.3150/19-bej1179
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Drton, Mathias;Robeva, Elina;Weihs, Luca
- 通讯作者:Weihs, Luca
Symmetric rank covariances: a generalized framework for nonparametric measures of dependence
- DOI:10.1093/biomet/asy021
- 发表时间:2018-09-01
- 期刊:
- 影响因子:2.7
- 作者:Weihs, L.;Drton, M.;Meinshausen, N.
- 通讯作者:Meinshausen, N.
On causal discovery with an equal-variance assumption
- DOI:10.1093/biomet/asz049
- 发表时间:2018-07
- 期刊:
- 影响因子:2.7
- 作者:Wenyu Chen;M. Drton;Y Samuel Wang
- 通讯作者:Wenyu Chen;M. Drton;Y Samuel Wang
High-dimensional causal discovery under non-Gaussianity
- DOI:10.1093/biomet/asz055
- 发表时间:2018-03
- 期刊:
- 影响因子:2.7
- 作者:Y Samuel Wang;Mathias Drton
- 通讯作者:Y Samuel Wang;Mathias Drton
High-dimensional consistent independence testing with maxima of rank correlations
- DOI:10.1214/19-aos1926
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:M. Drton;Fang Han;Hongjian Shi
- 通讯作者:M. Drton;Fang Han;Hongjian Shi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathias Drton其他文献
Robust non-convex penalized linear regression with algorithmic and statistical convergence
具有算法和统计收敛性的鲁棒非凸惩罚线性回归
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shota Katayama;Hironori Fujisawa;Mathias Drton;Shota Katayama and Hironori Fujisawa;Shota Katayama;片山翔太;片山翔太;片山翔太 - 通讯作者:
片山翔太
Finiteness of small factor analysis models
- DOI:
10.1007/s10463-010-0293-6 - 发表时间:
2010-04-07 - 期刊:
- 影响因子:0.600
- 作者:
Mathias Drton;Han Xiao - 通讯作者:
Han Xiao
Multiview Graph Embedding as a Generalization of Canonical Correlation Analysis
多视图图嵌入作为典型相关分析的推广
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mathias Drton;Satoshi Kuriki;Peter Hoff;Hidetoshi Shimodaira - 通讯作者:
Hidetoshi Shimodaira
Faithlessness in Gaussian graphical models
高斯图模型中的不忠实
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mathias Drton;Leonard Henckel;Benjamin Hollering;Pratik Misra - 通讯作者:
Pratik Misra
Assessable and interpretable sensitivity analysis in the pattern graph framework for nonignorable missingness mechanisms
不可忽略缺失机制的模式图框架中可评估和可解释的敏感性分析
- DOI:
10.1002/sim.9920 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
Alireza Zamanian;N. Ahmidi;Mathias Drton - 通讯作者:
Mathias Drton
Mathias Drton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathias Drton', 18)}}的其他基金
Bayesian Information Criteria and Problems of Parameter Identifiability
贝叶斯信息准则和参数可辨识性问题
- 批准号:
1305154 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
- 批准号:
1339098 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
- 批准号:
0746265 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Collaborative Research: Graphical and Algebraic Models for Multivariate Categorical Data
协作研究:多元分类数据的图形和代数模型
- 批准号:
0505612 - 财政年份:2005
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Development of statistical inference of extended Hawkes processes including missing data problem
扩展霍克斯过程的统计推断的发展,包括缺失数据问题
- 批准号:
23H03358 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Developing Statistical Tools for Data integration and Data Fusion for Finite Population Inference
开发用于有限总体推理的数据集成和数据融合的统计工具
- 批准号:
2242820 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant