CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
基本信息
- 批准号:0746265
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF CAREER proposal DMS-0746265This project is concerned with statistical models whose parameter spaces have singularities. The investigator studies how singularities impact the behavior of existing statistical methods and develops new techniques for adequate assessment of statistical significance. The focus is on algebraic statistical models, that is, models that have (semi-)algebraic sets as parameter spaces. The class of algebraic models comprises many of the singular models employed in practice and can be studied using tools from computational algebraic geometry. Importantly, the well-behaved local geometry of semi-algebraic sets makes it possible to obtain general results without having to assume difficult to verify regularity conditions. The statistical techniques under study include classical procedures from likelihood inference such as likelihood ratio and Wald tests as well as information criteria.Modern scientific studies often require analysis of data on several jointly observed variables. Statistical models of dependence relationships among the different variables are often formulated using additional variables that are not observable (or hidden). A common feature of hidden variable models is that their statistical properties are not entirely understood because of a lack of smoothness properties that makes them irregular. This is the primary motivation for this project that develops theory and methods that have a bearing on problems such as determining the number and type of unobserved variables to be included in a statistical model. Such problems arise in particular in applications in the social sciences where key concepts such as intelligence are not directly observable, and in computational biology where hidden variables are employed, for example, when DNA of present-day species is used to validate evolutionary theories that involve extinct species. More broadly, the work is relevant for any study, medical or otherwise, in which the existence of influential unobserved variables cannot be excluded.
NSF CAREER proposal DMS-0746265这个项目关注的是参数空间具有奇异性的统计模型。 研究人员研究奇异性如何影响现有统计方法的行为,并开发新技术以充分评估统计显著性。 重点是代数统计模型,即模型,有(半)代数集作为参数空间。 代数模型的类包括许多奇异模型在实践中使用,可以使用计算代数几何的工具进行研究。 重要的是,半代数集的良好的局部几何使得有可能获得一般的结果,而不必假设难以验证的正则性条件。 研究中的统计技术包括似然比、Wald检验等经典的似然推断方法和信息准则。现代科学研究往往需要对多个联合观测变量的数据进行分析。 不同变量之间依赖关系的统计模型通常使用不可观察(或隐藏)的附加变量来制定。 隐变量模型的一个共同特征是,由于缺乏平滑特性,使得它们不规则,因此它们的统计特性并不完全被理解。 这是该项目的主要动机,该项目开发了与确定统计模型中包含的未观察变量的数量和类型等问题有关的理论和方法。 这些问题特别出现在社会科学的应用中,其中智能等关键概念无法直接观察到,而在计算生物学中,隐藏变量被使用,例如,当现代物种的DNA被用来验证涉及灭绝物种的进化理论时。 更广泛地说,这项工作是相关的任何研究,医学或其他方面,其中存在的有影响力的未观察到的变量不能排除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathias Drton其他文献
Robust non-convex penalized linear regression with algorithmic and statistical convergence
具有算法和统计收敛性的鲁棒非凸惩罚线性回归
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shota Katayama;Hironori Fujisawa;Mathias Drton;Shota Katayama and Hironori Fujisawa;Shota Katayama;片山翔太;片山翔太;片山翔太 - 通讯作者:
片山翔太
Finiteness of small factor analysis models
- DOI:
10.1007/s10463-010-0293-6 - 发表时间:
2010-04-07 - 期刊:
- 影响因子:0.600
- 作者:
Mathias Drton;Han Xiao - 通讯作者:
Han Xiao
Multiview Graph Embedding as a Generalization of Canonical Correlation Analysis
多视图图嵌入作为典型相关分析的推广
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mathias Drton;Satoshi Kuriki;Peter Hoff;Hidetoshi Shimodaira - 通讯作者:
Hidetoshi Shimodaira
Faithlessness in Gaussian graphical models
高斯图模型中的不忠实
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mathias Drton;Leonard Henckel;Benjamin Hollering;Pratik Misra - 通讯作者:
Pratik Misra
Assessable and interpretable sensitivity analysis in the pattern graph framework for nonignorable missingness mechanisms
不可忽略缺失机制的模式图框架中可评估和可解释的敏感性分析
- DOI:
10.1002/sim.9920 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
Alireza Zamanian;N. Ahmidi;Mathias Drton - 通讯作者:
Mathias Drton
Mathias Drton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathias Drton', 18)}}的其他基金
Identification and Statistical Inference in Graphical Models with Feedback and Latent Variables
具有反馈和潜变量的图模型中的识别和统计推断
- 批准号:
1712535 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Bayesian Information Criteria and Problems of Parameter Identifiability
贝叶斯信息准则和参数可辨识性问题
- 批准号:
1305154 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
- 批准号:
1339098 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Graphical and Algebraic Models for Multivariate Categorical Data
协作研究:多元分类数据的图形和代数模型
- 批准号:
0505612 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference of Tail Dependent Time Series
职业:尾部相关时间序列的统计推断
- 批准号:
2131821 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant