Random Matrices and Interacting Systems
随机矩阵和交互系统
基本信息
- 批准号:1712551
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 1950's the physicist Eugene Wigner proposed the study of large random symmetric matrices in order to approximate the behavior of complicated self-adjoint operators. His goal was to understand the scaling properties of the eigenvalues of random matrices to get insight about the spectrum of certain operators arising from the study of heavy nuclei. In the last half century, random matrices found applications in a wide range of areas both within mathematics (e.g., combinatorics, number theory, and the study of interacting stochastic systems) and various other fields as well (e.g., information theory, financial mathematics, and RNA-folding). In the recent years, a new characterization has been established for limit laws of random matrices via the spectra of certain random self-adjoint differential operators. This provides a new connection between random matrices and self-adjoint operators more than half a century after Wigner's original idea. This research project explores this new area.This project builds on recent results of the investigator and collaborators on random operator representations of scaling limits of random matrices. The aim is to study the resultant random operators in order to learn more about the limit point processes. Questions under study include the application of the classical theory of differential operators to random matrices, the study of operator level convergence results for random matrix models with quantitative error bounds, and the investigation of the connection between random matrix limits and diffusions in the hyperbolic plane. The project also includes investigations related to the study of the large-scale behavior of interacting stochastic systems. It is conjectured that a wide family of one-dimensional interacting stochastic systems share an unusual scaling behavior with limit distributions related to random matrix theory; this is the Kardar-Parisi-Zhang (KPZ) universality class. The investigator intends to explore various models belonging (or conjectured to belong) to the KPZ universality class, with a special focus on directed polymers, a model describing random paths in a space-time environment that is also random.
在20世纪50年代,物理学家尤金维格纳(Eugene Wigner)提出研究大型随机对称矩阵,以近似复杂自伴算子的行为。他的目标是了解随机矩阵的本征值的标度特性,以了解某些运营商的频谱所产生的研究重核。在最近的半个世纪中,随机矩阵在数学中的广泛领域(例如,组合学、数论和相互作用随机系统的研究)以及各种其它领域(例如,信息论、金融数学和RNA折叠)。近年来,利用一类随机自伴微分算子的谱建立了随机矩阵极限律的一个新的刻画。这提供了一个新的连接随机矩阵和自伴运营商超过半个世纪后维格纳的原始想法。本研究计画探讨这一新领域,并建立在研究者与合作者最近关于随机矩阵标度极限的随机算子表示的研究成果上。目的是研究所得的随机算子,以便更多地了解极限点过程。 正在研究的问题包括应用经典理论的微分算子随机矩阵,研究运营商水平的收敛结果随机矩阵模型与定量误差界,并调查随机矩阵的限制和扩散之间的连接在双曲平面。该项目还包括与相互作用的随机系统的大规模行为的研究相关的调查。它是一个广泛的家庭一维相互作用的随机系统共享一个不寻常的标度行为与随机矩阵理论的极限分布,这是Kardar-Parisi-Zhang(KPZ)普适类。 研究人员打算探索属于(或被证明属于)KPZ普适性类的各种模型,特别关注定向聚合物,一种描述时空环境中随机路径的模型,也是随机的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random walk on the randomly-oriented Manhattan lattice
随机方向的曼哈顿格上的随机游走
- DOI:10.1214/18-ecp144
- 发表时间:2018
- 期刊:
- 影响因子:0.5
- 作者:Ledger, Sean;Tóth, Bálint;Valkó, Benedek
- 通讯作者:Valkó, Benedek
Operator limit of the circular beta ensemble
- DOI:10.1214/19-aop1391
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Benedek Valk'o;B'alint Vir'ag
- 通讯作者:Benedek Valk'o;B'alint Vir'ag
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benedek Valko其他文献
Benedek Valko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benedek Valko', 18)}}的其他基金
Random matrices, operators, and analytic functions
随机矩阵、运算符和解析函数
- 批准号:
2246435 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
CAREER: Random eigenvalue problems and fluctuations of large stochastic systems
职业:大型随机系统的随机特征值问题和波动
- 批准号:
1053280 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Random matrices and interacting particle systems
随机矩阵和相互作用的粒子系统
- 批准号:
0905820 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
- 批准号:
MR/Y033760/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
- 批准号:
2414497 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
- 批准号:
BB/Y007514/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
- 批准号:
2331037 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2331096 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Fellowship