New Nonparametric Modeling Methods for High-Dimensional Time Series
高维时间序列的新非参数建模方法
基本信息
- 批准号:1712558
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in modern technology have created numerous massive datasets, providing a great amount of information, but also new analysis challenges. The remarkable increase in the amount of data arises not only in the number of observations over time, but also in the number of variables that are simultaneously measured at each time. This results in high-dimensional time series data that are increasingly encountered in many fields, including finance, economics, genomics, social media, biomedical imaging, and so forth. High dimensional time series can be evolutionary, non-normally distributed, and/or heterogeneous. Methods for analyzing these types of data are still in their infancy due to the considerable methodological challenges encountered to describe their complex structure. Because of the intricacies of modern datasets, conventional statistical methods to extract information are often inappropriate. There is an immediate need for efficient and data-driven nonparametric methods to handle these problems. This project seeks to develop new nonparametric modelling methods with theoretical insights for structural change detection, robust estimation, heterogeneity exploration, and dynamic interdependency investigation. The project will help fill methodological gaps by greatly advancing the understanding of the intricacies of high-dimensional time series data. The new flexible methods may can benefit many scientific areas, including public health, medicine, economics, and the social sciences. The overall goal of this project is to develop new flexible statistical methods and theories to address the analytical challenges encountered in describing the evolutionary, non-normal, and heterogeneous features of high-dimensional time series data. This will be done via four inter-connected research topics. (1) A novel three-step method with theoretical guarantees will be developed for structural change detection and identification of factor models by exploiting nonparametric local estimation, shrinkage methods, and grid search techniques. The method can automatically detect breaks (if they exist) and identify their locations. (2) A new paradigm, covariate-assisted quantile latent factor models, is proposed for dimension reduction of high-dimensional time series. The method is robust to heavy-tailed distributions. The model assumptions are very general: the factors are unobserved, and both of the factors and their loadings can vary across quantiles. In addition, the method does not require moment conditions on the errors. (3) A concave fusion method is proposed for exploring heterogeneous functional curves driven by unobserved classes. The method permits structural change detection and heterogeneity exploration, which are difficult problems due to latent processes and the high-dimensional and dependence features in the data. (4) A new dimensionality reduction tool will be devised for a time-varying coefficient vector autoregressive model by exploiting non-centered functional principal component analysis. A novel computational estimation algorithm will be developed by combining proximal algorithms and optimization over Stiefel manifolds. The method can illuminate dynamic relationships in high dimensional nonstationary time series.
现代技术的进步创造了大量的海量数据集,提供了大量的信息,但也带来了新的分析挑战。数据量的显著增加不仅体现在随时间推移的观测数量上,而且体现在每次同时测量的变量数量上。这导致高维时间序列数据越来越多地出现在许多领域,包括金融,经济,基因组学,社交媒体,生物医学成像等。高维时间序列可以是演化的、非正态分布的和/或异构的。由于描述其复杂结构遇到了相当大的方法学挑战,分析这些类型数据的方法仍处于起步阶段。由于现代数据集的复杂性,传统的统计方法来提取信息往往是不合适的。有一个有效的和数据驱动的非参数方法来处理这些问题的迫切需要。该项目旨在开发新的非参数建模方法,为结构变化检测,稳健估计,异质性探索和动态相互依赖性调查提供理论见解。该项目将有助于填补方法上的空白,大大促进对高维时间序列数据的复杂性的理解。新的灵活方法可能会使许多科学领域受益,包括公共卫生,医学,经济学和社会科学。该项目的总体目标是开发新的灵活的统计方法和理论,以解决在描述高维时间序列数据的演化,非正态和异构特征时遇到的分析挑战。这将通过四个相互关联的研究课题来完成。(1)一种新的三步方法与理论保证将开发的结构变化检测和识别的因素模型,利用非参数局部估计,收缩方法,网格搜索技术。该方法可以自动检测断裂(如果存在)并识别其位置。(2)提出了一种新的高维时间序列降维模型-协变量辅助分位数潜在因子模型。该方法对重尾分布具有鲁棒性。模型假设非常一般:因子是不可观测的,并且因子及其载荷可以在分位数之间变化。此外,该方法不需要对误差的矩条件。(3)提出了一种凹融合方法,用于探索由不可观测类驱动的异质函数曲线。该方法允许结构变化检测和异构性探索,这是由于数据中的潜在过程和高维和依赖特征而造成的困难问题。(4)利用非中心函数主成分分析方法,设计了一种新的时变系数向量自回归模型降维工具。将近似算法与Stiefel流形上的优化相结合,提出了一种新的计算估计算法。该方法可以揭示高维非平稳时间序列的动态关系。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning methods for leveraging baseline covariate information to improve the efficiency of clinical trials
利用基线协变量信息提高临床试验效率的机器学习方法
- DOI:10.1002/sim.8054
- 发表时间:2019
- 期刊:
- 影响因子:2
- 作者:Zhang, Zhiwei;Ma, Shujie
- 通讯作者:Ma, Shujie
Estimation and inference in semiparametric quantile factor models
半参数分位数因子模型中的估计和推断
- DOI:10.1016/j.jeconom.2020.07.003
- 发表时间:2020
- 期刊:
- 影响因子:6.3
- 作者:Ma, Shujie;Linton, Oliver;Gao, Jiti
- 通讯作者:Gao, Jiti
A ROBUST AND EFFICIENT APPROACH TO CAUSAL INFERENCE BASED ON SPARSE SUFFICIENT DIMENSION REDUCTION.
- DOI:10.1214/18-aos1722
- 发表时间:2019-02
- 期刊:
- 影响因子:4.5
- 作者:Shujie Ma;Liping Zhu;Zhiwei Zhang;Chih-Ling Tsai;R. Carroll
- 通讯作者:Shujie Ma;Liping Zhu;Zhiwei Zhang;Chih-Ling Tsai;R. Carroll
Exploration of Heterogeneous Treatment Effects via Concave Fusion
- DOI:10.1515/ijb-2018-0026
- 发表时间:2020-05-01
- 期刊:
- 影响因子:1.2
- 作者:Ma, Shujie;Huang, Jian;Liu, Mingming
- 通讯作者:Liu, Mingming
Estimation of large dimensional factor models with an unknown number of breaks
- DOI:10.1016/j.jeconom.2018.06.019
- 发表时间:2018-11
- 期刊:
- 影响因子:6.3
- 作者:Shujie Ma;Liangjun Su
- 通讯作者:Shujie Ma;Liangjun Su
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shujie Ma其他文献
Design of Industrial Field Intelligent Temperature Acquisition System Based on Timestamped Anti-Interference Algorithm
基于时间戳抗干扰算法的工业现场智能温度采集系统设计
- DOI:
10.1109/ssci44817.2019.9002928 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chunjie Yang;Bingchun Jiao;Hongbo Kang;Yanwei Li;Yan Liu;Yifan Wu;Shujie Ma - 通讯作者:
Shujie Ma
Two-step spline estimating equations for generalized additive partially linear models with large cluster sizes
- DOI:
10.1214/12-aos1056 - 发表时间:
2012-12 - 期刊:
- 影响因子:4.5
- 作者:
Shujie Ma - 通讯作者:
Shujie Ma
Statistical Learning using Sparse Deep Neural Networks in Empirical Risk Minimization
在经验风险最小化中使用稀疏深度神经网络的统计学习
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shujie Ma;Mingming Liu - 通讯作者:
Mingming Liu
Supplemental Materials for “ Varying Index Coefficient Models
“变指数系数模型”的补充材料
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shujie Ma;P. Song - 通讯作者:
P. Song
Generalization and risk bounds for recurrent neural networks
循环神经网络的泛化和风险界
- DOI:
10.1016/j.neucom.2024.128825 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:6.500
- 作者:
Xuewei Cheng;Ke Huang;Shujie Ma - 通讯作者:
Shujie Ma
Shujie Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shujie Ma', 18)}}的其他基金
Uniform inference on continuous treatment effects via artificial neural networks in digital health
通过数字健康中的人工神经网络对连续治疗效果进行统一推断
- 批准号:
2310288 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Efficient Estimation of Treatment Effects via Nonparametric Machine Learning
通过非参数机器学习有效估计治疗效果
- 批准号:
2014221 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Estimation, model selection and inference in two classes of non- and semi-parametric models for repeated measurements
用于重复测量的两类非参数和半参数模型的估计、模型选择和推理
- 批准号:
1306972 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似海外基金
Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
- 批准号:
1950902 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Advances in Bayesian Nonparametric Methods for Jointly Modeling Multiple Data Sets
联合建模多个数据集的贝叶斯非参数方法的进展
- 批准号:
2013930 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Study on the data-driven fusion of nonparametric and sparse modeling
数据驱动的非参数与稀疏建模融合研究
- 批准号:
16K16108 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Geometric Approach to Bayesian Modeling and Inference with the Nonparametric Fisher-Rao Metric
使用非参数 Fisher-Rao 度量进行贝叶斯建模和推理的几何方法
- 批准号:
1613054 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Nonparametric Bayesian Regression for Categorical Responses: Novel Methodology for Modeling, Inference and Applications
分类响应的非参数贝叶斯回归:建模、推理和应用的新方法
- 批准号:
1310438 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Nonparametric Bayesian Approaches to Modeling Protein Structure
蛋白质结构建模的非参数贝叶斯方法
- 批准号:
8839256 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Nonparametric Bayesian Approaches to Modeling Protein Structure
蛋白质结构建模的非参数贝叶斯方法
- 批准号:
8656374 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Nonparametric Bayesian Approaches to Modeling Protein Structure
蛋白质结构建模的非参数贝叶斯方法
- 批准号:
8446627 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Nonparametric Bayesian Approaches to Modeling Protein Structure
蛋白质结构建模的非参数贝叶斯方法
- 批准号:
8501580 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Collaborative Research: Nonparametric Bayesian Modeling of Reliability of Nonelectronics
合作研究:非电子产品可靠性的非参数贝叶斯建模
- 批准号:
0926420 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant