Efficient Estimation of Treatment Effects via Nonparametric Machine Learning

通过非参数机器学习有效估计治疗效果

基本信息

  • 批准号:
    2014221
  • 负责人:
  • 金额:
    $ 15.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Advances in technology have created numerous large-scale datasets in observational studies, which bring unprecedented opportunities for evaluating the effectiveness of various treatments. The complex nature of large-scale observational data, such as its massive volume and high dimensions in confounders, pose great challenges to the existing conventional methods for causal analysis. The corresponding statistical implication is that even a small amount of bias can easily lead to erroneous conclusions. Thanks to the rapid development of scalable computing techniques, nonparametric machine learning methods have a strong potential for bias reduction via employing data-driven strategies for dimensionality reduction. However, careful consideration must be given in order to realize the potential for studying the underlying causal mechanisms. This project aims to develop cutting-edge statistical methods with theoretical insights for causality analysis using deep neural networks. The new statistical tools meet the immediate needs from various scientific areas for exploring causal relationships from large-scale observational data. The research will facilitate the causality analysis of modern complex data with important applications. This project will integrate research and education through course development, open-source software development, and undergraduate and graduate student training. The PI will develop a new unified approach with thorough theoretical justifications for efficient estimation of causal effects using deep neural networks. The method will then be applied to large-scale datasets with binary, multi-valued, or continuous-valued treatment variables. Three interconnected topics will be pursued. Specifically, the PI will offer a new perspective on learning treatment effects through a generalized optimization estimation. As a result, two convenient and efficient estimators of treatment effects will be developed, respectively, in the second and third topics. The estimators involve one nuisance model that will be approximated by deep neural networks, which will be investigated in the first topic. The general optimization framework includes the average, quantile and asymmetric least squares treatment effects as special cases. The methods take full advantage of the large sample size of large-scale data and provide effective protection against model mis-specification bias. The project involves devising new machine learning methods and algorithms for causal studies, establishing the theoretical validity, and developing valid inference procedures. It will promote machine learning methods for causality analysis, and will break new ground in drawing causal inference from large-scale observational datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的进步在观察性研究中创造了无数的大规模数据集,这为评估各种治疗的有效性带来了前所未有的机会。大规模观测数据的复杂性,如其庞大的数据量和高维的混杂因素,对现有的传统因果分析方法提出了巨大的挑战。相应的统计学含义是,即使是少量的偏差也很容易导致错误的结论。由于可伸缩计算技术的快速发展,非参数机器学习方法通过使用数据驱动的降维策略具有很强的减少偏差的潜力。然而,必须仔细考虑,以实现研究潜在因果机制的潜力。该项目旨在开发具有理论洞察力的尖端统计方法,用于使用深度神经网络进行因果分析。新的统计工具满足了各个科学领域从大规模观测数据中探索因果关系的迫切需要。该研究将有助于现代复杂数据的因果关系分析,具有重要的应用价值。该项目将通过课程开发、开源软件开发以及本科生和研究生培训来整合研究和教育。PI将开发一种新的统一方法,具有透彻的理论理由,用于使用深度神经网络有效地估计因果关系。然后,该方法将应用于具有二进制、多值或连续值处理变量的大规模数据集。将探讨三个相互关联的主题。具体地说,PI将通过广义优化估计为学习治疗效果提供一个新的视角。因此,在第二和第三个主题中,将分别开发两个方便和有效的治疗效果估计器。估计器涉及一个滋扰模型,该模型将被深度神经网络逼近,这将在第一个主题中进行研究。一般优化框架包括平均、分位数和非对称最小二乘处理效果作为特例。该方法充分利用了大规模数据的大样本量,有效地防止了模型误指定偏差的影响。该项目包括为因果研究设计新的机器学习方法和算法,建立理论有效性,并开发有效的推理程序。它将促进用于因果分析的机器学习方法,并将在从大规模观测数据中提取因果推理方面开辟新的天地。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve With High-Dimensional Covariates
Estimation and inference in semiparametric quantile factor models
半参数分位数因子模型中的估计和推断
  • DOI:
    10.1016/j.jeconom.2020.07.003
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Ma, Shujie;Linton, Oliver;Gao, Jiti
  • 通讯作者:
    Gao, Jiti
Capturing heterogeneity in repeated measures data by fusion penalty.
  • DOI:
    10.1002/sim.8878
  • 发表时间:
    2021-04-15
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Liu L;Gordon M;Miller JP;Kass M;Lin L;Ma S;Liu L
  • 通讯作者:
    Liu L
Personalized treatment selection via the covariate-specific treatment effect curve for longitudinal data
通过纵向数据的协变量特定治疗效果曲线进行个性化治疗选择
  • DOI:
    10.1080/24754269.2020.1762059
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Liu, Yanghui;Zhang, Riquan;Ma, Shujie;Zhang, Xiuzhen
  • 通讯作者:
    Zhang, Xiuzhen
Multivariate Functional Regression Via Nested Reduced-Rank Regularization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shujie Ma其他文献

Design of Industrial Field Intelligent Temperature Acquisition System Based on Timestamped Anti-Interference Algorithm
基于时间戳抗干扰算法的工业现场智能温度采集系统设计
Two-step spline estimating equations for generalized additive partially linear models with large cluster sizes
  • DOI:
    10.1214/12-aos1056
  • 发表时间:
    2012-12
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Shujie Ma
  • 通讯作者:
    Shujie Ma
Supplemental Materials for “ Varying Index Coefficient Models
“变指数系数模型”的补充材料
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shujie Ma;P. Song
  • 通讯作者:
    P. Song
Statistical Learning using Sparse Deep Neural Networks in Empirical Risk Minimization
在经验风险最小化中使用稀疏深度神经网络的统计学习
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shujie Ma;Mingming Liu
  • 通讯作者:
    Mingming Liu
Generalization and risk bounds for recurrent neural networks
循环神经网络的泛化和风险界
  • DOI:
    10.1016/j.neucom.2024.128825
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Xuewei Cheng;Ke Huang;Shujie Ma
  • 通讯作者:
    Shujie Ma

Shujie Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shujie Ma', 18)}}的其他基金

Uniform inference on continuous treatment effects via artificial neural networks in digital health
通过数字健康中的人工神经网络对连续治疗效果进行统一推断
  • 批准号:
    2310288
  • 财政年份:
    2023
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
New Nonparametric Modeling Methods for High-Dimensional Time Series
高维时间序列的新非参数建模方法
  • 批准号:
    1712558
  • 财政年份:
    2017
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
Estimation, model selection and inference in two classes of non- and semi-parametric models for repeated measurements
用于重复测量的两类非参数和半参数模型的估计、模型选择和推理
  • 批准号:
    1306972
  • 财政年份:
    2013
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant

相似海外基金

Egalitarian Equivalent Treatment Effects: The Econometrics of Inequality-Sensitive Treatment Effects Estimation
平等主义等效治疗效果:不平等敏感治疗效果估计的计量经济学
  • 批准号:
    2313969
  • 财政年份:
    2023
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
Beyond estimation: broadening the dynamic treatment regime literature
超越估计:扩大动态治疗方案文献
  • 批准号:
    RGPIN-2017-04221
  • 财政年份:
    2022
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Discovery Grants Program - Individual
Improving absorbed dose estimation for treatment planning in Molecular Radiotherapy
改进分子放射治疗中治疗计划的吸收剂量估计
  • 批准号:
    2734835
  • 财政年份:
    2022
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Studentship
Beyond estimation: broadening the dynamic treatment regime literature
超越估计:扩大动态治疗方案文献
  • 批准号:
    RGPIN-2017-04221
  • 财政年份:
    2021
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10297407
  • 财政年份:
    2021
  • 资助金额:
    $ 15.44万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10466912
  • 财政年份:
    2021
  • 资助金额:
    $ 15.44万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10610947
  • 财政年份:
    2021
  • 资助金额:
    $ 15.44万
  • 项目类别:
The estimation of demand for dental treatment during hospitalization in Japan
日本住院期间牙科治疗需求估算
  • 批准号:
    20K23016
  • 财政年份:
    2020
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Beyond estimation: broadening the dynamic treatment regime literature
超越估计:扩大动态治疗方案文献
  • 批准号:
    RGPIN-2017-04221
  • 财政年份:
    2020
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了