New Methodology and Theory for Optimal Treatment Regimes with Applications to Precision Medicine
最佳治疗方案的新方法和理论及其在精准医学中的应用
基本信息
- 批准号:1712706
- 负责人:
- 金额:$ 17.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of finding the optimal treatment regime, or a series of sequential treatment regimes, based on individual characteristics has important applications in areas such as precision medicine, government policies, and active labor market interventions. Depending on the application, a treatment can represent a drug, a device, a program, a policy, an intervention, or a strategy. Stimulated by the advancements in fields such as genomics and medical imaging, the last decade has witnessed exciting and remarkable progress in personalized medicine, ranging from treatments for breast cancer to treatments for major depressive disorders. The success of precision medicine depends on the development of accurate and reliable statistical and machine learning tools for estimating the optimal treatment regime given the data collected from randomized experiments or observational studies. This project will develop novel methodology, theory, and algorithms with the potential to significantly advance the state of the art in statistical estimation and inference for optimal treatment regimes. The proposed research will significantly enhance the availability of statistical methodology and theory for static or dynamic optimal treatment regimes estimation. A systematic framework for estimating optimal treatment regimes using a new quantile criterion for a variety of scenarios will be developed. The research will focus on both one-stage (static) treatment regimes and dynamic treatment regimes, the latter allowing for treatments to vary with time. In addition, the research will address completely observed responses and randomly censored responses (e.g., survival times), randomized trials and observational studies, and doubly robust estimation. The framework will also be extended to alternative criteria such as Gini's mean difference. This project will significantly advance the theoretical foundations of a large class of robust estimators of optimal treatment regimes. Furthermore, it addresses the challenging and important problem of developing new methodology and algorithms to identity important variables for optimal treatment regime estimation in the high-dimensional setting. The investigator will develop software packages and make them freely available to the research community. Students from minority groups will be especially encouraged to participate in the proposed project.
根据个体特征寻找最佳治疗方案或一系列顺序治疗方案的问题在精准医学、政府政策和积极的劳动力市场干预等领域具有重要的应用。 根据应用,治疗可以代表药物,设备,程序,政策,干预或策略。 在基因组学和医学成像等领域的进步的刺激下,过去十年在个性化医疗方面取得了令人兴奋和显着的进展,从乳腺癌的治疗到重度抑郁症的治疗。 精准医疗的成功取决于开发准确可靠的统计和机器学习工具,以根据从随机实验或观察性研究中收集的数据估计最佳治疗方案。 该项目将开发新的方法,理论和算法,有可能显着推进最佳治疗方案的统计估计和推断的最新技术水平。 该研究将显著提高静态或动态最佳治疗方案估计的统计方法和理论的可用性。 一个系统的框架,估计最佳的治疗方案,使用一个新的分位数标准的各种情况下,将制定。 该研究将侧重于一阶段(静态)治疗方案和动态治疗方案,后者允许治疗随时间变化。 此外,研究将解决完全观察到的反应和随机审查的反应(例如,生存时间)、随机试验和观察性研究以及双重稳健估计。该框架还将扩展到其他标准,如基尼平均差。该项目将显着推进最佳治疗方案的一大类鲁棒估计的理论基础。 此外,它解决了具有挑战性的和重要的问题,开发新的方法和算法,以确定重要的变量,在高维设置的最佳治疗方案估计。 调查员将开发软件包,免费提供给研究界。 将特别鼓励少数群体的学生参加拟议的项目。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double-slicing assisted sufficient dimension reduction for high-dimensional censored data
- DOI:10.1214/19-aos1880
- 发表时间:2020-08
- 期刊:
- 影响因子:4.5
- 作者:Shanshan Ding;W. Qian;Lan Wang
- 通讯作者:Shanshan Ding;W. Qian;Lan Wang
Sparse Concordance-assisted Learning for Optimal Treatment Decision
- DOI:
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Shuhan Liang;Wenbin Lu;R. Song;Lan Wang
- 通讯作者:Shuhan Liang;Wenbin Lu;R. Song;Lan Wang
Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors
- DOI:10.1093/biomet/asy037
- 发表时间:2018-07
- 期刊:
- 影响因子:2.7
- 作者:Lan Wang;I. Van Keilegom;Adam Maidman
- 通讯作者:Lan Wang;I. Van Keilegom;Adam Maidman
An Explicit Mean-Covariance Parameterization for Multivariate Response Linear Regression
- DOI:10.1080/10618600.2020.1853551
- 发表时间:2018-08
- 期刊:
- 影响因子:2.4
- 作者:Aaron J. Molstad;Guangwei Weng;Charles R. Doss;Adam J. Rothman
- 通讯作者:Aaron J. Molstad;Guangwei Weng;Charles R. Doss;Adam J. Rothman
A Tuning-free Robust and Efficient Approach to High-dimensional Regression
- DOI:10.1080/01621459.2020.1840989
- 发表时间:2020-10
- 期刊:
- 影响因子:3.7
- 作者:Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
- 通讯作者:Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Doss其他文献
Charles Doss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Doss', 18)}}的其他基金
Nonparametric Inference for Convex Functions and Continuous Treatment Effects
凸函数和连续治疗效果的非参数推理
- 批准号:
2210312 - 财政年份:2022
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Nonparametric Estimation and Inference: Shape Constraints, Model Selection, and Level Set Estimation
非参数估计和推理:形状约束、模型选择和水平集估计
- 批准号:
1712664 - 财政年份:2017
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
相似海外基金
Constructing a new standard of sociological methodology by mixed methods: A challenge to combine data and theory
混合方法构建社会学方法论新标准:数据与理论结合的挑战
- 批准号:
17K18587 - 财政年份:2017
- 资助金额:
$ 17.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Network “Public History: Theory and Methodology of a New Sub-Discipline of History”
网络“公共历史:历史学新分支的理论和方法论”
- 批准号:
352650773 - 财政年份:2017
- 资助金额:
$ 17.66万 - 项目类别:
Scientific Networks
New perspectives on loneliness: developing theory, methodology and evidence for practice
关于孤独的新视角:发展理论、方法论和实践证据
- 批准号:
ES/M002152/1 - 财政年份:2014
- 资助金额:
$ 17.66万 - 项目类别:
Research Grant
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
- 批准号:
1308960 - 财政年份:2013
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
New Theory and Methodology for Large-Scale Multiple Testing
大规模多重测试的新理论和新方法
- 批准号:
1244556 - 财政年份:2011
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
New Developments on Confidence Distributions (CDs) and Statistical Inference: Theory, Methodology and Applications
置信分布(CD)和统计推断的新进展:理论、方法和应用
- 批准号:
1107012 - 财政年份:2011
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
New Theory and Methodology for Large-Scale Multiple Testing
大规模多重测试的新理论和新方法
- 批准号:
1007675 - 财政年份:2010
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
CAREER: New Statistical Methodology and Theory for Mining High-Dimensional Data
职业:挖掘高维数据的新统计方法和理论
- 批准号:
0846068 - 财政年份:2009
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
New methodology in signal processing via sampled-data control theory and its development in new non-stationary system theory
通过采样数据控制理论进行信号处理的新方法及其在新非平稳系统理论中的发展
- 批准号:
18360203 - 财政年份:2006
- 资助金额:
$ 17.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Workshop on Design Theory and Methodology; Troy, New York; June 2-5, 1988
设计理论与方法研讨会;
- 批准号:
8812689 - 财政年份:1988
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant