Nonparametric Estimation and Inference: Shape Constraints, Model Selection, and Level Set Estimation
非参数估计和推理:形状约束、模型选择和水平集估计
基本信息
- 批准号:1712664
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Larger and more complex data sets are becoming more and more commonplace. It is thus both advantageous and necessary to use statistical methods that are very flexible, and which allow the data to "speak for itself," rather than having researchers make strong unjustifiable prior assumptions about the data. Flexible methods are thus necessary in the modern landscape, but they have the difficulty that the practitioner generally must "tune" the methods in order to get reliable results. This introduces an ad-hoc element to data analysis, leads to a lack of replicability in results, and means (incorrectly tuned) statistical procedures may return incorrect results. The unifying theme of this project is the development of statistical methods that are both very flexible and also fully automated, meaning they do not depending on user-chosen tuning parameters. The application areas motivating this project are varied, and include the analysis of vaccine trials, the study of economic data, and the problem of outlier detection (used widely in financial services).Very flexible nonparametric statistical methods have become necessary tools to handle the complex nature of large data sets. One difficulty with using nonparametric tools in practice is their general dependence on (potentially many) tuning parameters which must be chosen well to ensure reliable performance. The focus of this proposal is on developing methods which can be implemented and lead to reliable results without requiring any ad-hoc steps by the end user. Three main problems will be studied: (a) model selection for shape-constrained estimators, (b) likelihood ratio type tests for shape-constrained estimators, and (c) estimation and inference for complex features of multivariate densities. In (a) and (b) the focus is on using so-called shape-constrained estimators, which have the benefit of simultaneously being nonparametric but also of automatically selecting optimal tuning parameters. Furthermore, they arise out of natural or axiomatic prior information (e.g., economic theory or laws of physics) in many settings, and in such cases one should certainly use that information. In (c), the focus is on estimation of complex features of densities (such as level set manifolds, motivated by outlier detection problems). Both shape-constrained methods and alternative methods will be considered, when shape constraints are not applicable. There are few or no effective procedures available in many of the problems under consideration, because of the nonstandard nature of the problems.
更大和更复杂的数据集变得越来越普遍。 因此,使用非常灵活的统计方法是有利的,也是必要的,这些方法允许数据“为自己说话”,而不是让研究人员对数据做出强烈的不合理的事先假设。 因此,灵活的方法是必要的,在现代景观,但他们有困难,从业者一般必须“调整”的方法,以获得可靠的结果。 这给数据分析引入了一个特殊的元素,导致结果缺乏可复制性,并且意味着(不正确调整的)统计程序可能会返回错误的结果。 该项目的统一主题是开发非常灵活且完全自动化的统计方法,这意味着它们不依赖于用户选择的调优参数。 该项目的应用领域多种多样,包括疫苗试验分析、经济数据研究和异常值检测问题(广泛应用于金融服务)。非常灵活的非参数统计方法已成为处理大型数据集复杂性的必要工具。 在实践中使用非参数工具的一个困难是它们通常依赖于(可能有许多)调谐参数,这些参数必须选择得很好以确保可靠的性能。 本提案的重点是开发可实施的方法,并产生可靠的结果,而不需要最终用户采取任何特别步骤。 将研究三个主要问题:(a)形状约束估计的模型选择,(B)形状约束估计的似然比类型检验,(c)多元密度复杂特征的估计和推断。 在(a)和(B)中,重点是使用所谓的形状约束估计器,其具有同时是非参数的但也具有自动选择最佳调谐参数的益处。 此外,它们产生于自然或公理化的先验信息(例如,经济理论或物理定律)在许多情况下,在这种情况下,人们当然应该使用这些信息。在(c)中,重点是估计密度的复杂特征(例如水平集流形,由离群值检测问题激发)。 当形状约束不适用时,将考虑形状约束方法和替代方法。 由于这些问题的非标准性质,在所考虑的许多问题中几乎没有或没有有效的程序。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bandwidth selection for kernel density estimators of multivariate level sets and highest density regions
- DOI:10.1214/18-ejs1501
- 发表时间:2018-01-01
- 期刊:
- 影响因子:1.1
- 作者:Doss, Charles R.;Weng, Guangwei
- 通讯作者:Weng, Guangwei
Inference for a two-component mixture of symmetric distributions under log-concavity
对数凹性下对称分布的二元混合的推断
- DOI:10.3150/16-bej864
- 发表时间:2018
- 期刊:
- 影响因子:1.5
- 作者:Balabdaoui, Fadoua;Doss, Charles R.
- 通讯作者:Doss, Charles R.
Concave regression: value-constrained estimation and likelihood ratio-based inference
凹回归:值约束估计和基于似然比的推理
- DOI:10.1007/s10107-018-1338-5
- 发表时间:2019
- 期刊:
- 影响因子:2.7
- 作者:Doss, Charles R.
- 通讯作者:Doss, Charles R.
Bracketing numbers of convex and m -monotone functions on polytopes
多面体上凸函数和 m 单调函数的包围数
- DOI:10.1016/j.jat.2020.105425
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:Doss, Charles R.
- 通讯作者:Doss, Charles R.
Univariate log-concave density estimation with symmetry or modal constraints
具有对称性或模态约束的单变量对数凹密度估计
- DOI:10.1214/19-ejs1574
- 发表时间:2019
- 期刊:
- 影响因子:1.1
- 作者:Doss, Charles R.;Wellner, Jon A.
- 通讯作者:Wellner, Jon A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Doss其他文献
Charles Doss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Doss', 18)}}的其他基金
Nonparametric Inference for Convex Functions and Continuous Treatment Effects
凸函数和连续治疗效果的非参数推理
- 批准号:
2210312 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
New Methodology and Theory for Optimal Treatment Regimes with Applications to Precision Medicine
最佳治疗方案的新方法和理论及其在精准医学中的应用
- 批准号:
1712706 - 财政年份:2017
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
相似海外基金
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
- 批准号:
22K11939 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonparametric Estimation and Inference with Network Data
网络数据的非参数估计和推理
- 批准号:
2210561 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
CAREER: New Paradigms of Estimation and Inference in Constrained Nonparametric Models
职业:约束非参数模型中估计和推理的新范式
- 批准号:
2143468 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
- 批准号:
10297407 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
- 批准号:
10466912 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
- 批准号:
10610947 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Optimal Nonparametric Estimation of High-Dimensional Functionals in Causal Inference
因果推理中高维泛函的最优非参数估计
- 批准号:
1810979 - 财政年份:2018
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
CAREER: Nonparametric function estimation: shape constraints, adaptation, inference and beyond
职业:非参数函数估计:形状约束、适应、推理等
- 批准号:
1654589 - 财政年份:2017
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
CAREER: Locally Adaptive Nonparametric Estimation for the Modern Age - New Insights, Extensions, and Inference Tools
职业:现代局部自适应非参数估计 - 新见解、扩展和推理工具
- 批准号:
1554123 - 财政年份:2016
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant
Collaborative Research: Estimation, Inference, and Computation for Finite Nonparametric Mixtures
协作研究:有限非参数混合物的估计、推理和计算
- 批准号:
1208994 - 财政年份:2012
- 资助金额:
$ 9.98万 - 项目类别:
Continuing Grant