New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
基本信息
- 批准号:1308960
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantile regression has recently emerged as a valuable semiparametric alternative to the popular Cox model for analyzing censored data. It directly models survival time; thus is easy to interpret. More importantly, it relaxes the proportional hazards constraint associated with the Cox model and is particularly powerful for heterogeneous data. Despite the remarkable recent progress, several important and challenging statistical problems remain unsolved. For example, there exists limited literature on censored quantile regression when the sample arises from an observational study and is not representative of the target population; when the censored data come from genomics studies involving high-dimensional covariates; or when random effects are present due to the incorporation of latent variables. Motivated by these challenging problems, this project will develop novel methodology, theory and algorithms, which have the potential to significantly advance the applications of censored quantile regression. The PI will rigorously study the theoretical properties of the proposed new procedures and investigate their applications in practical data analysis. Censored data arise in diverse fields such as economics, engineering, medicine, psychology and sociology. The new methodology and theory are expected to make important contributions to the current body of knowledge on statistical analysis of survival data. In particular, the proposed research will make timely contributions to high-dimensional data analysis with censored responses, which has important applications in modern genomics and is still a relatively unexplored research area. The PI will develop useful software packages and make them freely available to the research community. The research results will be incorporated in different levels of statistical courses. The PI will also incorporate her research activity with graduate education. Students from minority groups will be especially encouraged to participate in the proposed projects.
分位数回归最近作为一种有价值的半参数替代流行的Cox模型来分析审查数据。它直接模拟了生存时间;这很容易解释。更重要的是,它放松了与Cox模型相关的比例风险约束,对于异构数据尤其强大。尽管最近取得了显著进展,但一些重要和具有挑战性的统计问题仍未得到解决。例如,当样本来自观察性研究且不代表目标人群时,关于截尾分位数回归的文献有限;当被审查的数据来自涉及高维协变量的基因组学研究时;或者当由于潜在变量的合并而出现随机效应时。在这些具有挑战性的问题的激励下,该项目将开发新的方法、理论和算法,这些方法、理论和算法有可能显著推进审查分位数回归的应用。PI将严格研究提出的新程序的理论性质,并调查其在实际数据分析中的应用。审查数据出现在经济学、工程学、医学、心理学和社会学等多个领域。新的方法和理论有望对目前生存数据统计分析的知识体系做出重要贡献。特别是,该研究将为具有审查响应的高维数据分析做出及时的贡献,这在现代基因组学中具有重要的应用,并且仍然是一个相对未开发的研究领域。PI将开发有用的软件包,并将其免费提供给研究界。研究结果将纳入不同层次的统计课程。该项目还将把她的研究活动与研究生教育结合起来。来自少数民族的学生将被特别鼓励参加拟议的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Wang其他文献
Destabilization of AETFC through C/EBP alpha-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation
C/EBP α 介导的 LYL1 抑制导致 AETFC 不稳定,导致 t(8;21) 白血病细胞分化
- DOI:
10.1038/s41375-019-0398-8 - 发表时间:
2019 - 期刊:
- 影响因子:11.4
- 作者:
Zhang Meng Meng;Liu Na;Zhang Yuan Liang;Rong Bowen;Wang Xiao Lin;Xu Chun Hui;Xie Yin Yin;Shen Shuhong;Zhu Jiang;Nimer Stephen D;Chen Zhu;Chen Sai Juan;Roeder Robert G;Lan Fei;Lan Wang;Huang Qiu Hua;Sun Xiao Jian - 通讯作者:
Sun Xiao Jian
CDKN1C (P57): one of the determinants of human endometrial stromal cell decidualization.[Epub ahead of print](SCI收录,影响因子3.4)
- DOI:
10.1093/biolre/iox187 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;Hui Yang;Linli Hu;Dan Hu;Hanwang Zhang;Kun Qian(钱坤;通讯作者) - 通讯作者:
通讯作者)
Discovery and geological significance of high quality hydrocarbon source rocks in interglacial of Neoproterozoic in the eastern part of the southern margin of North China
华北南缘东部新元古代间冰期优质烃源岩的发现及其地质意义
- DOI:
10.1016/j.jnggs.2018.06.001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shengfei Qin;P. Luo;Tongshan Wang;Lan Wang;Kui Ma - 通讯作者:
Kui Ma
Automatic characterization of leukemic cells with 2D light scattering static cytometry
使用二维光散射静态细胞术自动表征白血病细胞
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;Qiao Liu;Linyan Xie;C. Shao;Xuantao Su - 通讯作者:
Xuantao Su
Terahertz meta-chip switch based on C-ring coupling
基于C环耦合的太赫兹元芯片开关
- DOI:
10.1515/nanoph-2021-0646 - 发表时间:
2022-01 - 期刊:
- 影响因子:7.5
- 作者:
Sen Gong;Hongxin Zeng;Qianyu Zhang;Chunyang Bi;Lan Wang;Tianchi Zhou;Ziqiang Yang;Yaxin Zhang;Fanzhong Meng;Zhenpeng Zhang;Yuan Fang - 通讯作者:
Yuan Fang
Lan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Wang', 18)}}的其他基金
FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
- 批准号:
1952373 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
2023755 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
1940160 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
- 批准号:
1743598 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
- 批准号:
1629769 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512267 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
- 批准号:
1344495 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Cooperative Agreement
Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
- 批准号:
1007603 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:
1040036 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NeTS-FIND: Collaborative Research: Enabling Future Internet innovations through Transit wire (eFIT)
NeTS-FIND:协作研究:通过传输线实现未来互联网创新 (eFIT)
- 批准号:
0721645 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似海外基金
Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
- 批准号:
10064693 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
- 批准号:
23H01264 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
- 批准号:
23H01944 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
- 批准号:
23K17404 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
- 批准号:
23K01343 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)