Collaborative Research: Adaptive Testing and Rare-Event Analysis of High-Dimensional Data

协作研究:高维数据的自适应测试和罕见事件分析

基本信息

项目摘要

This project aims at developing adaptively powerful testing procedures for high-dimensional data with applications in genetics, genomics and neuroimaging. Due to recent biotechnological advances, large amounts of high-throughput and high-dimensional molecular and imaging data have been collected, resulting in a number of new and challenging statistical questions. One question is how polygenic testing in genome-wide association studies (GWAS) may be used to answer whether some of the millions of genetic variants are associated with a complex disease like Alzheimer's disease. The answer to this question is important to uncovering disease-related genes, and thus developing effective prevention and treatment strategies. The focus on rigorous hypothesis testing to avoid false discoveries, while maximizing the chance for true discoveries, is critical to modern genetic, genomic and other omic studies. The methods will be applied to data related to Alzheimer's disease, for which currently there is no cure, and more powerful analysis methods are urgently needed to unravel the underlying biology. Graduate students will be involved in the conduct of the research and development of the computational tools, and publicly available software packages will be developed for use by other biomedical researchers.This research will advance the frontiers of modern statistical methodology in hypothesis testing with high-dimensional data and related rare event assessment. Powerful adaptive methods for testing high-dimensional mean parameters in generalized linear models as well as high-dimensional covariance matrix structures will be developed. The adaptive test statistics are constructed based on high-dimensional high-order von Mises V-statistics and U-statistics, and will provide uniformly high power against sparse, dense, as well as moderately sparse or dense signals for flexible asymptotic regimes. Another thrust of the research deals with the challenging and important rare-event estimation problem in analysis of genome-wide molecular and neuroimaging data, where a high stringent statistical significance level is usually needed. To evaluate such small probabilities, the research will lead to theoretical tail probability approximations as well as efficient Monte Carlo methods using non-standard change-of-measure techniques.
该项目旨在为高维数据开发适应性强大的测试程序,并将其应用于遗传学、基因组学和神经成像。由于最近生物技术的进步,人们收集了大量的高通量和高维的分子和成像数据,从而产生了一些新的和具有挑战性的统计问题。一个问题是,全基因组关联研究中的多基因测试如何被用来回答数百万个基因变异中的一些是否与阿尔茨海默病等复杂疾病有关。这个问题的答案对于发现与疾病相关的基因,从而制定有效的预防和治疗策略非常重要。关注严格的假设检验以避免错误发现,同时最大限度地增加真正发现的机会,对现代遗传学、基因组和其他基因组研究至关重要。这些方法将应用于与阿尔茨海默病相关的数据,目前还没有治愈方法,迫切需要更强大的分析方法来揭开潜在的生物学基础。研究生将参与计算工具的研究和开发,并将开发公开可用的软件包,供其他生物医学研究人员使用。这项研究将推动现代统计方法在高维数据假设检验和相关罕见事件评估方面的前沿。将开发强大的自适应方法来检验广义线性模型中的高维平均参数以及高维协方差矩阵结构。自适应测试统计量是基于高维高阶von Mise V统计量和U统计量构造的,对于稀疏、稠密以及中等稀疏或稠密的信号,对于灵活的渐近机制,它将提供一致的高功率。这项研究的另一个重点涉及在全基因组分子和神经成像数据的分析中具有挑战性和重要的罕见事件估计问题,其中通常需要高严格的统计显著性水平。为了评估这样的小概率,这项研究将导致理论上的尾部概率近似以及使用非标准测量变化技术的高效蒙特卡罗方法。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Debiased Inference on Treatment Effect in a High Dimensional Model
高维模型中治疗效果的去偏推断
Identifiability of Hierarchical Latent Attribute Models
  • DOI:
    10.5705/ss.202021.0350
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yuqi Gu;Gongjun Xu
  • 通讯作者:
    Yuqi Gu;Gongjun Xu
Gaussian variational estimation for multidimensional item response theory
多维项目响应理论的高斯变分估计
Uniformly efficient simulation for extremes of Gaussian random fields
高斯随机场极值的一致有效模拟
  • DOI:
    10.1017/jpr.2018.11
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Li, Xiaoou;Xu, Gongjun
  • 通讯作者:
    Xu, Gongjun
Transformed Dynamic Quantile Regression on Censored Data
截尾数据的变换动态分位数回归
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gongjun Xu其他文献

Towards Comprehensive Monitoring of Graduate Attribute Development: A Learning Analytics Approach in Higher Education
全面监测毕业生属性发展:高等教育中的学习分析方法
Statistical Inference on Latent Space Models for Network Data
网络数据潜在空间模型的统计推断
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinming Li;Gongjun Xu;Ji Zhu
  • 通讯作者:
    Ji Zhu
On the Density Functions of Integrals of Gaussian Random Fields
关于高斯随机场积分的​​密度函数
Identifiability and Cognitive Diagnosis Models
可识别性和认知诊断模型
Clustering Consistency of General Nonparametric Classification Methods in Cognitive Diagnosis
认知诊断中通用非参数分类方法的聚类一致性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlong Liu;Gongjun Xu
  • 通讯作者:
    Gongjun Xu

Gongjun Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gongjun Xu', 18)}}的其他基金

CAREER: Identifiability and Inferences for Structured Latent Attribute Models
职业:结构化潜在属性模型的可识别性和推理
  • 批准号:
    1846747
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Cognitive Diagnosis Models: Identifiability, Estimation, and Applications
认知诊断模型:可识别性、估计和应用
  • 批准号:
    1659328
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316614
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316613
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了