Cognitive Diagnosis Models: Identifiability, Estimation, and Applications
认知诊断模型:可识别性、估计和应用
基本信息
- 批准号:1659328
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cognitive diagnosis models (CDMs) are state-of-the-art psychometric models in education, psychology, and other social sciences. This research project will introduce a comprehensive theoretical and methodological framework that will make construction and analysis of CDM-based assessments more practicable. This development will provide a better understanding of the skills and cognitive processes involved in cognitive assessments. From a societal perspective, the integration of CDMs with cognitive and learning sciences will provide a powerful tool for identifying specific problems and difficulties that students encounter in skill acquisition. This interdisciplinary research project will help design a blueprint for mapping out timely, appropriate, and targeted interventions. The results of this project have the potential to positively impact STEM education and the training of students. Graduate students will be involved in the conduct of the research. Publicly available software also will be developed.This research project addresses fundamental identifiability and estimation issues of CDMs. Specifically, the project will address identifiability issues for general CDMs and provide practical guidelines for designing identifiable and statistical valid diagnosis tests. The project will address the challenging issue of Q-matrix validation and estimation. The research will develop computationally efficient methods to estimate the Q-matrix and detect possible misspecification of the Q-matrix and provide the related theoretical justification. The project also will develop an accessible computer program that can be used in conjunction with the proposed theory and methods. Extensive simulation studies will be performed to validate the performance of the estimation methods, and a variety of real data sets will be analyzed.
认知诊断模型(CDMs)是教育学、心理学和其他社会科学中最先进的心理测量模型。本研究项目将提出一个全面的理论和方法框架,使基于清洁发展机制的评估的构建和分析更加切实可行。这一发展将使人们更好地理解认知评估所涉及的技能和认知过程。从社会的角度来看,CDM与认知和学习科学的整合将提供一个强大的工具,用于识别学生在技能获取中遇到的具体问题和困难。这个跨学科的研究项目将有助于设计一个蓝图,制定及时,适当和有针对性的干预措施。该项目的成果有可能对STEM教育和学生培训产生积极影响。研究生将参与研究的进行。本研究项目涉及清洁发展机制的基本可识别性和估算问题。具体而言,该项目将解决一般CDM的可识别性问题,并为设计可识别和统计有效的诊断测试提供实用指南。该项目将解决Q矩阵验证和估计的挑战性问题。该研究将开发计算效率高的方法来估计Q-矩阵和检测可能的错误指定的Q-矩阵,并提供相关的理论证明。该项目还将开发一个可访问的计算机程序,可以与所提出的理论和方法结合使用。将进行广泛的模拟研究,以验证估计方法的性能,并将分析各种真实的数据集。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LIKELIHOOD RATIO TEST IN MULTIVARIATE LINEAR REGRESSION: FROM LOW TO HIGH DIMENSION
- DOI:10.5705/ss.202019.0056
- 发表时间:2021-07-01
- 期刊:
- 影响因子:1.4
- 作者:He, Yinqiu;Jiang, Tiefeng;Xu, Gongjun
- 通讯作者:Xu, Gongjun
Transformed Dynamic Quantile Regression on Censored Data
截尾数据的变换动态分位数回归
- DOI:10.1080/01621459.2019.1695623
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Chu, Chi Wing;Sit, Tony;Xu, Gongjun
- 通讯作者:Xu, Gongjun
A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Chong Wu;Gongjun Xu;Xiaotong Shen;W. Pan
- 通讯作者:Chong Wu;Gongjun Xu;Xiaotong Shen;W. Pan
Identifiability of Hierarchical Latent Attribute Models
- DOI:10.5705/ss.202021.0350
- 发表时间:2019-06
- 期刊:
- 影响因子:1.4
- 作者:Yuqi Gu;Gongjun Xu
- 通讯作者:Yuqi Gu;Gongjun Xu
Gaussian variational estimation for multidimensional item response theory
多维项目响应理论的高斯变分估计
- DOI:10.1111/bmsp.12219
- 发表时间:2020
- 期刊:
- 影响因子:2.6
- 作者:Cho, April E.;Wang, Chun;Zhang, Xue;Xu, Gongjun
- 通讯作者:Xu, Gongjun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gongjun Xu其他文献
Towards Comprehensive Monitoring of Graduate Attribute Development: A Learning Analytics Approach in Higher Education
全面监测毕业生属性发展:高等教育中的学习分析方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Abhinava Barthakur;Jelena Jovanovic;Andrew Zamecnik;V. Kovanović;Gongjun Xu;Shane Dawson - 通讯作者:
Shane Dawson
Statistical Inference on Latent Space Models for Network Data
网络数据潜在空间模型的统计推断
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jinming Li;Gongjun Xu;Ji Zhu - 通讯作者:
Ji Zhu
On the Density Functions of Integrals of Gaussian Random Fields
关于高斯随机场积分的密度函数
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.2
- 作者:
Jingcheng Liu;Gongjun Xu - 通讯作者:
Gongjun Xu
Identifiability and Cognitive Diagnosis Models
可识别性和认知诊断模型
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Gongjun Xu - 通讯作者:
Gongjun Xu
Rare-Event Simulation for the Stochastic Korteweg-de Vries Equation
随机 Korteweg-de Vries 方程的罕见事件模拟
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Gongjun Xu;G. Lin;Jingcheng Liu - 通讯作者:
Jingcheng Liu
Gongjun Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gongjun Xu', 18)}}的其他基金
CAREER: Identifiability and Inferences for Structured Latent Attribute Models
职业:结构化潜在属性模型的可识别性和推理
- 批准号:
1846747 - 财政年份:2019
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Testing and Rare-Event Analysis of High-Dimensional Data
协作研究:高维数据的自适应测试和罕见事件分析
- 批准号:
1712717 - 财政年份:2017
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
相似海外基金
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
- 批准号:
10665213 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation
开发和评估用于自动诊断生成的多模式临床诊断推理模型
- 批准号:
10724044 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Identification and Estimation of Dynamic Restricted Latent Class Models for Cognitive Diagnosis
用于认知诊断的动态受限潜在类别模型的识别和估计
- 批准号:
2150628 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Identifying Neurophysiological Markers of Emotion Regulation Relevant to Adolescent Depression Diagnosis and Prognosis: A Comparison of Classification Models
识别与青少年抑郁症诊断和预后相关的情绪调节的神经生理标志物:分类模型的比较
- 批准号:
10617686 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
General Cognitive Diagnosis Models: Development, Estimation, and Applications
一般认知诊断模型:开发、估计和应用
- 批准号:
2150601 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Identifying Neurophysiological Markers of Emotion Regulation Relevant to Adolescent Depression Diagnosis and Prognosis: A Comparison of Classification Models
识别与青少年抑郁症诊断和预后相关的情绪调节的神经生理标志物:分类模型的比较
- 批准号:
10461562 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Development and application of cognitive diagnosis models for tailor-made learning environment
定制学习环境认知诊断模型的开发与应用
- 批准号:
22K13810 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Differential diagnosis of Parkinson's and multiple system atrophy in non-human primate models using a novel a-synuclein retinal contrast agent and AI-assisted analytics
使用新型α-突触核蛋白视网膜造影剂和人工智能辅助分析对非人类灵长类动物模型中的帕金森病和多系统萎缩进行鉴别诊断
- 批准号:
10323567 - 财政年份:2021
- 资助金额:
$ 21.5万 - 项目类别:














{{item.name}}会员




