CAREER: Properties of Solutions to Singular Stochastic Partial Differential Equations from Quantum Field Theory

职业:量子场论奇异随机偏微分方程解的性质

基本信息

  • 批准号:
    2044415
  • 负责人:
  • 金额:
    $ 42.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This mathematics research project focuses on studying the small-scale behavior of some quantum field theory models in physics. The research aims to produce an accurate description and understanding of the ultraviolet divergence phenomenon. In the study of the standard model of elementary particles, for example, physicists often use Monte-Carlo simulation; the research carried out in this project aims to reveal why discrete simulation can accurately predict the behavior of a continuous quantum field, how quickly dynamical algorithms will converge to the quantity being observed, and to what degree a homogenized approximation can effectively describe the macroscopic nature of a many-body problem. The project also includes two educational components, focusing on rejuvenation of the Graduate Student Probability Conference (GSPC), which is entirely run by graduate students primarily from the US, and a Stochastic Partial Differential Equations (SPDE) education program that is vertically integrated across the full spectrum of academic research. The GSPC and the SPDE education program seek sustained long-term benefit to the future generations of the probability community. The project focuses on studying the properties of the solutions of some singular stochastic partial differential equations. In recent years, there has been rapid progress in the construction of the solutions of these equations, and the project aims to study the properties of the solutions that have been constructed. Specifically, the investigator will study the universal limits of the stochastic Yang-Mills equation and explore the connections between stochastic partial differential equations, large-N problems in quantum field theory, and the theory of mean field limits. Recently developed theory of solutions will play a central role. The PI aims to develop rigorous proofs for results that make practical predictions. These studies are anticipated to result in profound connections with physics and even to influence other natural sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个数学研究项目的重点是研究物理学中一些量子场论模型的小尺度行为。该研究旨在准确描述和理解紫外发散现象。例如,在基本粒子标准模型的研究中,物理学家经常使用蒙特-卡罗模拟;在这个项目中进行的研究旨在揭示为什么离散模拟可以准确地预测连续量子场的行为,动力学算法如何快速收敛到所观察的量,以及均匀化近似在多大程度上能够有效地描述多体问题的宏观性质。该项目还包括两个教育部分,重点是研究生概率会议(GSPC)的复兴,该会议完全由主要来自美国的研究生运行,以及随机偏微分方程(SPDE)教育计划,该计划垂直整合了整个学术研究领域。GSPC和SPDE教育计划旨在为概率界的后代提供持续的长期利益。本项目主要研究一类奇异随机偏微分方程解的性质。近年来,在这些方程的解的构造方面取得了迅速进展,该项目旨在研究已构造的解的性质。具体来说,研究者将研究随机杨米尔斯方程的普遍极限,并探索随机偏微分方程,量子场论中的大N问题和平均场极限理论之间的联系。最近开发的解决方案理论将发挥核心作用。PI旨在为做出实际预测的结果提供严格的证明。这些研究有望与物理学产生深远的联系,甚至影响其他自然科学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A stochastic PDE approach to large N problems in quantum field theory: A survey
A Stochastic Analysis Approach to Lattice Yang–Mills at Strong Coupling
  • DOI:
    10.1007/s00220-022-04609-1
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hao Shen;Rongchan Zhu;Xiangchan Zhu
  • 通讯作者:
    Hao Shen;Rongchan Zhu;Xiangchan Zhu
An SPDE approach to perturbation theory of Φ24: Asymptoticity and short distance behavior
π24 微扰理论的 SPDE 方法:渐近性和短距离行为
  • DOI:
    10.1214/22-aap1873
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shen, Hao;Zhu, Rongchan;Zhu, Xiangchan
  • 通讯作者:
    Zhu, Xiangchan
Large N Limit of the O(N) Linear Sigma Model in 3D
  • DOI:
    10.1007/s00220-022-04414-w
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hao Shen;Rongchan Zhu;Xiangchan Zhu
  • 通讯作者:
    Hao Shen;Rongchan Zhu;Xiangchan Zhu
Langevin dynamic for the 2D Yang–Mills measure
  • DOI:
    10.1007/s10240-022-00132-0
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Chandra;I. Chevyrev;Martin Hairer;Hao Shen
  • 通讯作者:
    A. Chandra;I. Chevyrev;Martin Hairer;Hao Shen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Shen其他文献

Passivity-based fault-tolerant synchronization control of chaotic neuralbr / networks against actuator faults using the semi-Markov jumpbr / model approach
使用半马尔可夫跳跃模型方法对混沌神经网络进行基于无源容错同步控制以对抗执行器故障
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Jing Wang;Hao Shen
  • 通讯作者:
    Hao Shen
Generalised dissipative asynchronous output feedback control for Markov jump repeated scalar non-linear systems with time-varying delay
时变时滞马尔可夫跳重复标量非线性系统的广义耗散异步输出反馈控制
  • DOI:
    10.1049/iet-cta.2018.6114
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Jing Wang;Shicheng Huo;Jianwei Xia;Ju H. Park;Xia Huang;Hao Shen
  • 通讯作者:
    Hao Shen
Development of efficient fabrication process of metallic nanostructures for optical functional surfaces
光学功能表面金属纳米结构高效制造工艺的开发
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Shen;Masahiko Yoshino;Motoki Terano
  • 通讯作者:
    Motoki Terano
Fuzzy-model-based H_infinity control for Markov jump nonlinear slow sampling singularly perturbed systems with partial information
部分信息马尔可夫跳跃非线性慢采样奇摄动系统基于模糊模型的H_infinity控制
Exponential H∞ Filtering for Continuous-Time Switched Neural Networks Under Persistent Dwell-Time Switching Regularity
持续停留时间切换规律下连续时间切换神经网络的指数 H 滤波
  • DOI:
    10.1109/tcyb.2019.2901867
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Hao Shen;Zhengguo Huang;Jinde Cao;Ju H. Park
  • 通讯作者:
    Ju H. Park

Hao Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Shen', 18)}}的其他基金

Stochastic Partial Differential Equations, Gauge Theories, and Scaling Limits
随机偏微分方程、规范理论和标度极限
  • 批准号:
    1954091
  • 财政年份:
    2020
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
  • 批准号:
    1909525
  • 财政年份:
    2018
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
  • 批准号:
    1712684
  • 财政年份:
    2017
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant

相似海外基金

Modelling extensional flow properties of solutions of polymers and thread-like micelles
模拟聚合物和线状胶束溶液的拉伸流动特性
  • 批准号:
    2323147
  • 财政年份:
    2023
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
Development of Nanochannel Membranes Having Rapid Transport Properties in Aqueous and Non-aqueous Solutions
开发在水和非水溶液中具有快速传输特性的纳米通道膜
  • 批准号:
    23K17369
  • 财政年份:
    2023
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Analysis on Qualitative Properties and Singularities of Solutions to k-Hessian Equation and k-curvature Equation
k-Hessian方程和k-曲率方程解的定性性质和奇异性分析
  • 批准号:
    22K03386
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrothermal properties of complex aqueous solutions, and applications to ore-forming systems
复杂水溶液的水热性质及其在成矿系统中的应用
  • 批准号:
    RGPIN-2018-04370
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Discovery Grants Program - Individual
Bridge Housing Solutions: An AI prediction engine (utilising NLP and contextual scoring) to match social housing properties and reduce the need for temporary accommodation
Bridge Housing Solutions:人工智能预测引擎(利用 NLP 和上下文评分)来匹配社会住房属性并减少临时住宿的需求
  • 批准号:
    10035267
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Collaborative R&D
Development of asphalt solutions for paving applications with optimum environmental and engineering properties
开发具有最佳环境和工程性能的铺路应用沥青解决方案
  • 批准号:
    555488-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Alliance Grants
Stabilities and properties of high-pressure oxide phases containing Cr with focus on solid solutions of (Mg,Fe2+)3Fe2O6 – testing for possible precursor phases for inclusions in diamond
含 Cr 的高压氧化物相的稳定性和性能,重点关注 (Mg,Fe2)3Fe2O6 的固溶体 â 测试金刚石中夹杂物可能的前体相
  • 批准号:
    504772250
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Research Grants
Hydrothermal properties of complex aqueous solutions, and applications to ore-forming systems
复杂水溶液的水热性质及其在成矿系统中的应用
  • 批准号:
    RGPIN-2018-04370
  • 财政年份:
    2021
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Discovery Grants Program - Individual
Development of asphalt solutions for paving applications with optimum environmental and engineering properties
开发具有最佳环境和工程性能的铺路应用沥青解决方案
  • 批准号:
    555488-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了