Operator Limits of Random Matrices

随机矩阵的算子极限

基本信息

  • 批准号:
    1712729
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Random matrix theory grew out of fundamental considerations in mathematical statistics and theoretical physics, and now has applications in such disparate areas as number theory, statistical mechanics, wireless communications and bioinformatics. A perfect example of the field's reach is offered by the so-called Tracy-Widom laws. First discovered in the description of the largest eigenvalues for certain large random matrices, these laws are now understood to serve the role of the "bell curve" (or provide the appropriate central limit theorem) for a wide area of modern nonlinear phenomena. The main objective of this research is to advance our understanding of these and other probability laws introduced through the study of random matrices. The focus is on their basic mathematical properties, as well as extending the class of models in which they apply.The research builds in part on the PI's recent work on the general beta extensions of the Tracy-Widom and related distributions. These extensions have the advantage of embedding the more familiar triple(s) of limit laws (tied to the orthogonal, unitary and symplectic symmetry classes) into a one-parameter family of distributions defined via random differential operators. The main goal here is to push this approach toward descriptions of more exotic limit theorems, such as the higher order Tracy-Widom laws and various double scaling regimes (again in the general beta context). Additional projects center around a recently established matrix version of the classical Dufresne identity for integrated geometric Brownian motion as well as solvable matrix models which interpolate between the Gaussian Orthogonal and Symplectic Ensembles and can be viewed as multi-type coulomb gases.
随机矩阵理论产生于数理统计和理论物理的基本考虑,现在在数论、统计力学、无线通信和生物信息学等不同领域都有应用。所谓的特蕾西-威登定律是该领域影响范围的一个完美例子。这些定律最初是在对某些大型随机矩阵的最大特征值的描述中发现的,现在被理解为为广泛的现代非线性现象提供“钟形曲线”的作用(或提供适当的中心极限定理)。本研究的主要目的是通过研究随机矩阵来提高我们对这些和其他概率律的理解。重点是它们的基本数学性质,以及扩展它们所应用的模型类别。该研究部分建立在PI最近对tracy - wisdom和相关发行版的通用beta扩展的工作上。这些扩展的优点是将更熟悉的三重极限定律(与正交、酉和辛对称类有关)嵌入到通过随机微分算子定义的单参数分布族中。这里的主要目标是将这种方法推向更奇特的极限定理的描述,例如高阶Tracy-Widom定律和各种双尺度制度(再次在一般的beta环境中)。其他项目围绕着最近建立的集成几何布朗运动的经典Dufresne恒等式的矩阵版本,以及可解的矩阵模型,该模型在高斯正交和辛系综之间插值,可以被视为多类型库仑气体。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universality of the Stochastic Bessel Operator
  • DOI:
    10.1007/s00440-018-0888-z
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    2
  • 作者:
    B. Rider;Patrick Waters
  • 通讯作者:
    B. Rider;Patrick Waters
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Rider其他文献

Shape of the Ground State Energy Density of Hill’s Equation with Nice Gaussian Potential
  • DOI:
    10.1007/s10959-007-0105-y
  • 发表时间:
    2007-06-20
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    José A. Ramírez;Brian Rider
  • 通讯作者:
    Brian Rider
Erratum to: Diffusion at the Random Matrix Hard Edge
Acute Effects of Ischemic Preconditioning at Different Occlusion Pressures on Athletic Performance Indicators in Male Soccer Players
不同闭塞压力下的缺血预处理对男性足球运动员运动表现指标的急性影响
Characterization of the Effects of the Vasopressin V2 Receptor 3 on Sweating, Fluid Balance and Performance during Exercise 4 5
加压素 V2 受体 3 对运动期间出汗、体液平衡和表现的影响的表征 4 5
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tamara Hew;J. Hummel;Brian Rider;J. G. Verbalis
  • 通讯作者:
    J. G. Verbalis

Brian Rider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Rider', 18)}}的其他基金

Thematic Semester on Probabilistic Methods in Geometry, Topology, and Mathematical Physics
几何、拓扑和数学物理中的概率方法专题学期
  • 批准号:
    1619617
  • 财政年份:
    2016
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Limit laws arising in random matrix theory
随机矩阵理论中出现的极限定律
  • 批准号:
    1406107
  • 财政年份:
    2014
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
CAREER: Random Matrices, Random Schroedinger and Communication
职业:随机矩阵、随机薛定谔和通信
  • 批准号:
    1340489
  • 财政年份:
    2013
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
CAREER: Random Matrices, Random Schroedinger and Communication
职业:随机矩阵、随机薛定谔和通信
  • 批准号:
    0645756
  • 财政年份:
    2007
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Asymptotic Problems in the Theory of Random Spectra
随机谱理论中的渐近问题
  • 批准号:
    0505680
  • 财政年份:
    2005
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
Scaling limits of growth in random media
扩大随机介质的增长极限
  • 批准号:
    2246576
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Scaling limits for random processes
随机过程的缩放限制
  • 批准号:
    2597633
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Studentship
Large symmetrised systems of interacting Brownian bridges and random interlacements and their scaling limits
相互作用的布朗桥和随机交错的大型对称系统及其尺度限制
  • 批准号:
    2813903
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Studentship
Limits of random reduced decompositions
随机约简分解的极限
  • 批准号:
    532984-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Postdoctoral Fellowships
Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
  • 批准号:
    1954343
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Scaling limits of random particle aggregation models
随机粒子聚集模型的尺度限制
  • 批准号:
    2434393
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Studentship
Limits of random reduced decompositions
随机约简分解的极限
  • 批准号:
    532984-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Postdoctoral Fellowships
Scaling limits of critical directed random graphs
临界有向随机图的缩放限制
  • 批准号:
    2272117
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了