Derived Geometry, Elliptic Cohomology, and Loop Stacks

导出几何、椭圆上同调和循环堆栈

基本信息

  • 批准号:
    1714273
  • 负责人:
  • 金额:
    $ 18.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Algebraic topology is the study of topological spaces via algebraic methods. The principal investigator will study various naturally-occurring topological objects from the perspective of algebraic geometry. A fundamental goal of the project is to place mathematical concepts in reach of computational methods. The investigator plans to use recent theoretical advances in algebraic geometry and topology in order to develop calculational tools to explore a relationship between quantum field theory and the elusive notion of elliptic object. Generalized cohomology theories are arguably the most useful and important tool in modern algebraic topology. In addition to ordinary cohomology, examples such as K-theory, elliptic cohomology, and complex cobordism admit surprisingly close connections to algebraic geometry via the theory of formal groups. While the formal groups associated to ordinary cohomology and K-theory are additive and multiplicative, respectively, elliptic curves carry much more complicated group structures (in fact, their relative intractability has been exploited in real world applications such as public key cryptography). The advantage of formal groups that arise from global geometric objects, such as the multiplicative group or elliptic curves, is that their corresponding cohomology theories are very highly structured. For instance, K-theory is structurally similar to ordinary representation theory, whereas the analogous "elliptic representation theory," while related to diverse fields such as arithmetic geometry and mathematical physics, remains a mystery. Important work over the past few decades has led to a construction of a universal elliptic cohomology theory, a topological refinement of the classical theory of modular forms. Exploiting its structure allows one to associate to a topological stack an algebro-geometric object over the moduli stack of elliptic curves. While the derived ring of functions on this object is technically the elliptic cohomology of the original topological object, elliptic curves are not affine objects, meaning that this passage from geometry to algebra loses significant information. The more fundamental structure is that which exists on the algebro-geometric level itself, before affinization, and one retains considerably more conceptual and calculational control by manipulating these objects directly. An interesting twist is that, while there is no a priori understanding of elliptic cohomology classes (in stark contrast to K-theory, where cocycles correspond to formal differences of vector bundles), it may be possible to gain insight into this fundamentally important problem by interpreting calculations in several key examples.
代数拓扑学是通过代数方法研究拓扑空间的学科。首席研究员将从代数几何的角度研究各种自然发生的拓扑对象。该项目的一个基本目标是将数学概念引入计算方法。研究人员计划使用代数几何和拓扑学的最新理论进展,以开发计算工具来探索量子场论与椭圆物体难以捉摸的概念之间的关系。广义上同调理论可以说是现代代数拓扑学中最有用和最重要的工具。除了普通的上同调,例如K-理论、椭圆上同调和复配边等例子都承认通过形式群理论与代数几何有着惊人的密切联系。虽然与普通上同调和K-理论相关的形式群分别是加法和乘法的,但椭圆曲线具有更复杂的群结构(事实上,它们的相对棘手性已在真实的世界应用中得到利用,如公钥密码学)。从全局几何对象(如乘法群或椭圆曲线)中产生的形式群的优点是它们对应的上同调理论是非常高度结构化的。例如,K理论在结构上类似于普通的表示理论,而类似的“椭圆表示理论”虽然与算术几何和数学物理等不同领域有关,但仍然是一个谜。在过去的几十年里,重要的工作导致了一个普遍的椭圆上同调理论的建设,一个拓扑细化的经典理论的模形式。利用它的结构允许一个拓扑堆栈的代数几何对象的模堆栈的椭圆曲线。虽然这个对象上的函数的导出环在技术上是原始拓扑对象的椭圆上同调,但椭圆曲线不是仿射对象,这意味着从几何到代数的这一过程丢失了重要信息。更基本的结构是在仿射化之前存在于代数几何层次本身的结构,人们通过直接操纵这些对象来保留更多的概念和计算控制。一个有趣的转折是,虽然没有对椭圆上同调类的先验理解(与K理论形成鲜明对比,其中上循环对应于向量丛的形式差异),但通过解释几个关键例子中的计算,可能会深入了解这个根本重要的问题。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K-theoretic obstructions to bounded t-structures
  • DOI:
    10.1007/s00222-018-00847-0
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Benjamin Antieau;David Gepner;J. Heller
  • 通讯作者:
    Benjamin Antieau;David Gepner;J. Heller
∞-Operads as Analytic Monads
-作为分析单子的操作
Brauer groups and Galois cohomology of commutative ring spectra
交换环谱的布劳尔群和伽罗瓦上同调
  • DOI:
    10.1112/s0010437x21007065
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Gepner, David;Lawson, Tyler
  • 通讯作者:
    Lawson, Tyler
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Miller其他文献

Conservation and divergence in cortical cellular organization between human and mouse revealed by single-cell transcriptome imaging
单细胞转录组成像揭示人类和小鼠皮质细胞组织的保守性和差异
  • DOI:
    10.1101/2021.11.01.466826
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rongxin Fang;C. Xia;Meng Zhang;Jiang He;J. Close;Brian Long;Jeremy Miller;E. Lein;X. Zhuang
  • 通讯作者:
    X. Zhuang
Uniform twisted homological stability
均匀扭曲同源稳定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeremy Miller;Peter Patzt;Dan Petersen;O. Randal
  • 通讯作者:
    O. Randal
Assessing the importance of first postadiabatic terms for small-mass-ratio binaries
评估小质量比双星的第一后绝热项的重要性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Ollie Burke;Gabriel Andres Piovano;Niels Warburton;Philip Lynch;L. Speri;C. Kavanagh;B. Wardell;A. Pound;Leanne Durkan;Jeremy Miller
  • 通讯作者:
    Jeremy Miller
$$E_n$$ -cell attachments and a local-to-global principle for homological stability
  • DOI:
    10.1007/s00208-017-1533-3
  • 发表时间:
    2017-03-20
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alexander Kupers;Jeremy Miller
  • 通讯作者:
    Jeremy Miller
Homological stability for topological chiral homology of completions
补全的拓扑手性同源性的同源稳定性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kupers;Jeremy Miller
  • 通讯作者:
    Jeremy Miller

Jeremy Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Miller', 18)}}的其他基金

Stability Patterns in the Homology of Moduli Spaces
模空间同调中的稳定性模式
  • 批准号:
    2202943
  • 财政年份:
    2022
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
Homological Stability and Its Generalizations
同源稳定性及其概括
  • 批准号:
    1709726
  • 财政年份:
    2017
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
SBIR Phase II: Efficient Comparative Effective Research Tools In Real Time Environment
SBIR 第二阶段:实时环境中高效的比较有效的研究工具
  • 批准号:
    1230265
  • 财政年份:
    2012
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
SBIR Phase I: Efficient Comparative Effective Research Tools In Real Time Environment
SBIR 第一阶段:实时环境中高效的比较有效的研究工具
  • 批准号:
    1113336
  • 财政年份:
    2011
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elliptic Cohomology, Geometry, and Physics
椭圆上同调、几何和物理
  • 批准号:
    2205835
  • 财政年份:
    2022
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2021
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2020
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Grants Program - Individual
A comprehensive study of elliptic algebras and new development of noncommutative algebraic geometry
椭圆代数综合研究及非交换代数几何新进展
  • 批准号:
    20K14288
  • 财政年份:
    2020
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
  • 批准号:
    2271985
  • 财政年份:
    2019
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Studentship
Elliptic representation theory: the study of symmetries across geometry, algebra and physics
椭圆表示理论:跨几何、代数和物理学的对称性研究
  • 批准号:
    DE190101222
  • 财政年份:
    2019
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Early Career Researcher Award
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2019
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2018
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions of Derived Moduli Spaces and Gerbes with Elliptic Genera in Complex Geometry
复杂几何中导出模空间和Gerbes与椭圆属的相互作用
  • 批准号:
    376202359
  • 财政年份:
    2017
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Research Fellowships
Existence and non-existence of blowing-up solutions for nonlinear elliptic equations arising in physics and geometry
物理和几何中非线性椭圆方程的爆炸解的存在性和不存在性
  • 批准号:
    RGPIN-2016-04195
  • 财政年份:
    2017
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了