Stability Patterns in the Homology of Moduli Spaces

模空间同调中的稳定性模式

基本信息

  • 批准号:
    2202943
  • 负责人:
  • 金额:
    $ 26.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Homology is a mathematical tool that was introduced over a hundred years ago to measure features of shape that remain invariant under deformation. This helped make rigorous many calculations in calculus and physics involving integrals of functions defined on spaces with “holes.” Homology gives an algebraic measure of holes in geometric objects, allowing algebraic techniques to give geometric information, for example, showing that a given geometric object cannot be deformed into another one. The aim of this project is to study patterns in the homology of families of spaces coming from number theory and geometry. These patterns simplify homology calculations by reducing infinite calculations to finite calculations. In this project, new methods involving the use of computers in theoretical algebraic topology and number theory will be developed. The project will enhance graduate and postdoctoral training in algebraic topology through mentoring, seminars, and conferences. The PI will promote diversity and inclusion through participation in a summer bridge program designed for students from underrepresented racial and ethnic groups to better prepare them for graduate school.This project aims to improve understanding of the homology of arithmetic groups, a central concept in number theory, algebraic K-theory, and even the theory of manifolds. In high dimensions, the homology is known to vanish, and, in low dimensions, the homology is known to stabilize. These stable homology groups have been completely calculated in many cases. The project focuses on two ranges of dimensions: just below where the homology is known to vanish and just above the stable range. Conjecturally, the highest degree homology groups should exhibit a pattern called “extremal stability” and the homology near the stable range should exhibit a different pattern called “secondary stability.” Highly connected simplicial complexes and operadic cells will be used to try to establish these conjectures. The connection with algebraic K-theory will be a key point of emphasis when studying the homology of arithmetic groups. Similar patterns will be investigated in spaces coming from geometric topology such as various moduli spaces and configuration spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
同调是一种数学工具,在一百多年前被引入,用于测量在变形下保持不变的形状特征。这有助于在微积分和物理学中进行严格的许多计算,涉及在具有“洞”的空间上定义的函数积分。同调给出了几何对象中孔洞的代数度量,允许代数技术给出几何信息,例如,表明给定的几何对象不能变形为另一个。这个项目的目的是研究来自数论和几何的空间族的同调模式。这些模式通过将无限计算减少到有限计算来简化同源性计算。在这个项目中,将开发涉及在理论代数拓扑学和数论中使用计算机的新方法。该项目将通过指导、研讨会和会议加强代数拓扑学的研究生和博士后培训。PI将通过参加一个夏桥项目来促进多样性和包容性,该项目旨在为来自代表性不足的种族和民族的学生更好地准备研究生院。该项目旨在提高对算术群的同源性的理解,这是数论,代数K理论甚至流形理论的核心概念。在高维度中,已知同源性消失,并且在低维度中,已知同源性稳定。这些稳定的同调群在许多情况下已经被完全计算出来。该项目关注两个维度范围:刚好低于已知同源性消失的地方和刚好高于稳定范围。从理论上讲,最高程度的同源群应该表现出一种称为"极端稳定性"的模式,而接近稳定范围的同源群应该表现出一种称为"次级稳定性"的不同模式。高度连接的单纯复形和运算细胞将被用来尝试建立这些结构。与代数K-理论的联系将是研究算术群同调的一个重点。类似的模式将在来自几何拓扑的空间中进行研究,例如各种模数空间和配置空间。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Miller其他文献

Conservation and divergence in cortical cellular organization between human and mouse revealed by single-cell transcriptome imaging
单细胞转录组成像揭示人类和小鼠皮质细胞组织的保守性和差异
  • DOI:
    10.1101/2021.11.01.466826
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rongxin Fang;C. Xia;Meng Zhang;Jiang He;J. Close;Brian Long;Jeremy Miller;E. Lein;X. Zhuang
  • 通讯作者:
    X. Zhuang
Uniform twisted homological stability
均匀扭曲同源稳定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeremy Miller;Peter Patzt;Dan Petersen;O. Randal
  • 通讯作者:
    O. Randal
Assessing the importance of first postadiabatic terms for small-mass-ratio binaries
评估小质量比双星的第一后绝热项的重要性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Ollie Burke;Gabriel Andres Piovano;Niels Warburton;Philip Lynch;L. Speri;C. Kavanagh;B. Wardell;A. Pound;Leanne Durkan;Jeremy Miller
  • 通讯作者:
    Jeremy Miller
$$E_n$$ -cell attachments and a local-to-global principle for homological stability
  • DOI:
    10.1007/s00208-017-1533-3
  • 发表时间:
    2017-03-20
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alexander Kupers;Jeremy Miller
  • 通讯作者:
    Jeremy Miller
Homological stability for topological chiral homology of completions
补全的拓扑手性同源性的同源稳定性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kupers;Jeremy Miller
  • 通讯作者:
    Jeremy Miller

Jeremy Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Miller', 18)}}的其他基金

Derived Geometry, Elliptic Cohomology, and Loop Stacks
导出几何、椭圆上同调和循环堆栈
  • 批准号:
    1714273
  • 财政年份:
    2017
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Homological Stability and Its Generalizations
同源稳定性及其概括
  • 批准号:
    1709726
  • 财政年份:
    2017
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
SBIR Phase II: Efficient Comparative Effective Research Tools In Real Time Environment
SBIR 第二阶段:实时环境中高效的比较有效的研究工具
  • 批准号:
    1230265
  • 财政年份:
    2012
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
SBIR Phase I: Efficient Comparative Effective Research Tools In Real Time Environment
SBIR 第一阶段:实时环境中高效的比较有效的研究工具
  • 批准号:
    1113336
  • 财政年份:
    2011
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Uncovering the evolutionary patterns of the Aculeata stinger
揭示 Aculeata 毒刺的进化模式
  • 批准号:
    24K18174
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
  • 批准号:
    2346471
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
  • 批准号:
    2333917
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
AGS-PRF: Understanding Historical Trends in Tropical Pacific Sea Surface Temperature Patterns
AGS-PRF:了解热带太平洋海面温度模式的历史趋势
  • 批准号:
    2317224
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Fellowship Award
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 26.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了