Analysis of Partial Differential Equations Arising in Population Genetics and Singular Stochastic Control
群体遗传学与奇异随机控制中的偏微分方程分析
基本信息
- 批准号:1714490
- 负责人:
- 金额:$ 12.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is motivated by applications to population genetics and optimization. The first objective of the project is to predict the changes of the genic characteristics of a population, and to compute fundamental biological quantities, such as the expected time before extinction and fixation of a gene type in the genome. The successful implementation of this research program is expected to have a direct impact on understanding medical disorders caused by single-gene mutations in genetics and of evolutionary trees in phylogenetics. The second objective of this research is centered on a family of open problems in optimization with applications to communication networks, spacecraft control, and economics, among others. A suitable framework to analyze such questions is the theory of singular stochastic control, where the goal is to design a controlled process that performs a task with minimum cost in a random environment. This project will help to gain insight into the construction of optimal execution policies and in the evaluation of minimal costs in networks. The PI will continue to involve both undergraduate and graduate students in her research program, to promote the visibility of women and underrepresented groups in the mathematical community, and to organize conferences at University of Minnesota and American Mathematical Society meetings.The goal of the first part of the research program is to build a comprehensive regularity theory for a class of degenerate elliptic operators defined on singular manifolds capable of taking into account a wide range of factors that impact the genetic evolution. The PI aims to develop novel analytic and probabilistic methods adapted to the particular degenerate features of these operators and the geometry of the non-smooth manifolds, where such problems are formulated. She expects that this research will have further implications in harmonic analysis, mathematical finance, and in probability. The second topic of the project seeks to develop the mathematical foundations to address the questions of interest related to the identification of optimal execution policies in singular stochastic control problems. The PI pursues a program to advance our understanding of the regularity theory of a wide class of second order Hamilton-Jacobi-Bellman equations with gradient constraints. This research will entail the development of novel techniques that forge into the theories of nonlinear equations and nonlinear boundary conditions of oblique type, and require careful boundary estimates adapted to the non-smooth domains appearing in this framework.
该项目的动机是应用于群体遗传学和优化。该项目的第一个目标是预测种群基因特征的变化,并计算基本的生物数量,例如基因组中基因类型灭绝和固定之前的预期时间。这项研究计划的成功实施有望对理解由遗传学中的单基因突变和系统遗传学中的进化树引起的医学疾病产生直接影响。本研究的第二个目标集中在通信网络、航天器控制和经济等方面的优化应用中的一系列开放问题上。分析这类问题的一个合适的框架是奇异随机控制理论,其目标是设计一个受控过程,在随机环境中以最小的代价执行任务。该项目将有助于深入了解网络中最佳执行策略的构建和最小成本的评估。PI将继续让本科生和研究生参与她的研究项目,以提高女性和数学社区中代表性不足的群体的知名度,并在明尼苏达大学和美国数学学会会议上组织会议。本研究计划第一部分的目标是为定义在奇异流形上的一类退化椭圆算子建立一个综合的正则性理论,该理论能够考虑影响遗传进化的各种因素。PI旨在开发新的解析和概率方法,以适应这些算子的特殊退化特征和非光滑流形的几何形状,其中这些问题是公式化的。她期望这项研究将在谐波分析、数学金融和概率论方面有进一步的启示。该项目的第二个主题旨在发展数学基础,以解决与奇异随机控制问题中最佳执行策略的识别相关的问题。PI追求一个程序,以提高我们对一类具有梯度约束的二阶Hamilton-Jacobi-Bellman方程的正则性理论的理解。这项研究将需要发展新的技术,形成非线性方程和非线性斜型边界条件的理论,并需要仔细的边界估计,以适应在这个框架中出现的非光滑域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ru-yu Lai其他文献
Ru-yu Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ru-yu Lai', 18)}}的其他基金
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
- 批准号:
2306221 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Continuing Grant
Mathematical Analysis for Kinetic Equations and Elliptic Equations
动力学方程和椭圆方程的数学分析
- 批准号:
2006731 - 财政年份:2020
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Discovery Projects
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Continuing Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant














{{item.name}}会员




