Mathematical Analysis for Kinetic Equations and Elliptic Equations
动力学方程和椭圆方程的数学分析
基本信息
- 批准号:2006731
- 负责人:
- 金额:$ 21.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses several fundamental questions in reconstructing unknown properties through nondestructive methods. These methods allow one to recover hidden parameters, which are usually unseen in nondestructive evaluation, from external observations. Related applications appear everywhere from the medical imaging in our daily lives, to the study of dynamics of our solar system and beyond, including the detection of tumor tissues in medical imaging, finding cracks and interfaces within materials, and the study of the Earth and solar interior. One primary component of this project aims to study central mathematical questions that arise from the investigation of the dynamics of dilute charged particles, and performance optimization for semiconductor devices. The methodologies developed in this project will excite innovative applications of the nondestructive method in scientific investigations. This project will integrate the research component with the educational training of graduate students, and will particularly address the involvement of underrepresented groups. This project will investigate inverse problems for the kinetic theory and elliptic equations. The major goal will be focused on fundamental questions and important applications related to these equations, with the aim of developing mathematical theories for the reconstruction of significant information from the given data. Specifically, the first part of this project is to study several kinetic equations in both forward and inverse settings with applications in plasma physics, semiconductor, and medical imaging. The topics include the identification of unknown properties in Boltzmann equations, which model the dynamics of dilute charged particles, and the investigation of material parameters and complex collision effects from measurable data. The second part of the project centers around the inverse boundary value problems for elliptic operators. The goal is to reconstruct unknown coefficients in linear and nonlinear elliptic equations that arise naturally in many physical phenomena in a bounded region from partial or full data on the boundary. In particular, the investigator will study uniqueness and stability issues in the reconstruction process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目解决了通过非破坏性方法重建未知属性的几个基本问题。这些方法允许一个恢复隐藏的参数,这通常是看不见的无损评价,从外部观察。相关的应用无处不在,从我们日常生活中的医学成像,到我们太阳系及更远的动力学研究,包括医学成像中肿瘤组织的检测,寻找材料中的裂缝和界面,以及地球和太阳内部的研究。该项目的一个主要组成部分旨在研究从稀带电粒子动力学研究中产生的核心数学问题,以及半导体器件的性能优化。在这个项目中开发的方法将激发非破坏性方法在科学调查中的创新应用。该项目将把研究部分与研究生的教育培训结合起来,并将特别解决代表性不足群体的参与问题。本计画将探讨动力学理论与椭圆型方程式之逆问题。主要目标将集中在与这些方程相关的基本问题和重要应用上,目的是发展数学理论,以便从给定数据中重建重要信息。具体来说,这个项目的第一部分是研究几个动力学方程的正向和反向设置与应用在等离子体物理,半导体和医学成像。主题包括在玻尔兹曼方程,模型的动力学稀带电粒子,材料参数和复杂的碰撞效应从可测量的数据的调查未知属性的识别。该项目的第二部分围绕椭圆算子的逆边值问题。我们的目标是重建未知系数的线性和非线性椭圆方程,自然产生的许多物理现象在一个有界区域的部分或全部数据的边界。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse Transport and Diffusion Problems in Photoacoustic Imaging with Nonlinear Absorption
- DOI:10.1137/21m1436178
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Ru-Yu Lai;Kui Ren;Ting Zhou
- 通讯作者:Ru-Yu Lai;Kui Ren;Ting Zhou
An inverse problem for the non-linear fractional magnetic Schrödinger equation
非线性分数阶磁薛定谔方程的反问题
- DOI:10.1016/j.jde.2022.09.033
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Lai, Ru-Yu;Zhou, Ting
- 通讯作者:Zhou, Ting
Single Pixel X-ray Transform and Related Inverse Problems
单像素X射线变换及相关反演问题
- DOI:10.1137/21m1468103
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Lai, Ru-Yu;Uhlmann, Gunther;Zhai, Jian;Zhou, Hanming
- 通讯作者:Zhou, Hanming
Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations
具有低阶非线性扰动的分数拉普拉斯方程的反演问题
- DOI:10.3934/ipi.2021051
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Lai, Ru-Yu;Ohm, Laurel
- 通讯作者:Ohm, Laurel
Inverse source problems in transport equations with external forces
外力传递方程中的逆源问题
- DOI:10.1016/j.jde.2021.09.011
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Lai, Ru-Yu;Zhou, Hanming
- 通讯作者:Zhou, Hanming
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ru-yu Lai其他文献
Ru-yu Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ru-yu Lai', 18)}}的其他基金
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
- 批准号:
2306221 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Continuing Grant
Analysis of Partial Differential Equations Arising in Population Genetics and Singular Stochastic Control
群体遗传学与奇异随机控制中的偏微分方程分析
- 批准号:
1714490 - 财政年份:2017
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
- 批准号:
435842-2013 - 财政年份:2017
- 资助金额:
$ 21.59万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
- 批准号:
435842-2013 - 财政年份:2016
- 资助金额:
$ 21.59万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
- 批准号:
435842-2013 - 财政年份:2015
- 资助金额:
$ 21.59万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
- 批准号:
435842-2013 - 财政年份:2014
- 资助金额:
$ 21.59万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
- 批准号:
435842-2013 - 财政年份:2013
- 资助金额:
$ 21.59万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: The Numerical Analysis of Nonlinear Vlasov Kinetic Equations
数学科学:非线性 Vlasov 动力学方程的数值分析
- 批准号:
9622690 - 财政年份:1996
- 资助金额:
$ 21.59万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Analysis of Kinetic Quantum Transport Models for Semiconductors
数学科学:半导体动力学量子输运模型的数学分析
- 批准号:
9500852 - 财政年份:1995
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
Mathematical Sciences: The Analysis of Particle Methods for Solving Vlasov Kinetic Equation
数学科学:求解弗拉索夫动力学方程的粒子方法分析
- 批准号:
9023063 - 财政年份:1991
- 资助金额:
$ 21.59万 - 项目类别:
Continuing Grant
KINETIC MODELING/MATHEMATICAL ANALYSIS OF PHYSIOLOGICAL & BIOCHEMICAL PROCESSES
生理动力学建模/数学分析
- 批准号:
6162890 - 财政年份:
- 资助金额:
$ 21.59万 - 项目类别:














{{item.name}}会员




