CHS: Small: Novel Method for Vectorization of Arbitrary Natural Images and Its Applications

CHS:Small:任意自然图像矢量化的新方法及其应用

基本信息

  • 批准号:
    1715985
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Vector graphics offers a compact and lossless image representation with advantages such as geometric editability, resolution independence, significant saving in storage and in network bandwidth, image display at drastically varying resolutions, and ease of animation. This research aims to significantly advance the traditional boundary of image vectorization based on partial differential equations (PDEs) and their intrinsic connection with Green's functions and harmonic B-splines (serving as fundamental solutions for PDEs), which has not yet been explored for vector graphics, image modeling, image data fitting, and analysis. If successful, project outcomes will include a novel vector image modeling methodology and its application for image vectorization and authoring as well as solid texture and animation. At the core of this project's theoretical foundation are PDEs and their meshless closed-form solvers based on fundamental solutions. The novel representation is expected to outperform the conventional diffusion curve based and gradient mesh based representations. The new modeling scheme will be capable in theory of expressing arbitrary images with arbitrary discontinuities. Consequently, this research will advance the state of the art in both the theory and practice of vector graphics. Beyond the conventional frontier of visual computing, since this research is solely built upon PDEs and their fundamental solutions, it is anticipated that other disciplines such as applied mathematics, the physical sciences, mechanical engineering, and the earth/space sciences will directly benefit from project outcomes.This project will explore a novel image vectorization modeling scheme: Poisson Vector graphics (PVG), which computes complex color gradients via a sparse set of geometric primitives and color constraints. Detailed research activities include: (1) articulation of a sound theoretic foundation for PVG with non-zero Laplacians, the methodology to be founded upon PDEs and their meshless closed-form solvers by taking advantage of Green's functions serving as their fundamental solutions; (2) derivation of a closed-form solution for Poisson equations based on the intrinsic connection between Green's function and harmonic B-splines; (3) development of a method for vectorization of arbitrary natural images by PVG based on numerical optimization, so that they can be represented with high precision; (4) design of an authoring tool for PVG with new Poisson curve and Poisson region metaphors, so that users will be able to design vector images with much more flexibility than conventional first or second order diffusion curves; and (5) demonstration that the novel PVG is applicable to animation. Comprehensive qualitative and quantitative comparison with the current state-of-the-art will be carried out to showcase the new framework's superiority. Ultimately, this project's integrated approach combines the merits of diffusion curve and gradient mesh, which is capable of drastically expanding the applied scope of vector graphics to visual information modeling, analysis, and processing, where numerical measurements are prevalent.
向量图形提供了一个紧凑而无损的图像表示形式,其优点,例如几何编辑性,分辨率独立性,存储和网络带宽的大量节省,图像在巨大变化的分辨率上显示以及动画的易用性。 这项研究的目的是根据偏微分方程(PDE)及其与Green的功能和谐波B-Splines(用作PDE的基本解决方案)的固有联系,以显着提高图像矢量化的传统边界,尚未探索用于矢量图形,图像模型,图像数据拟合和分析的矢量图形图形。 如果成功,项目成果将包括一种新颖的矢量图像建模方法及其在图像矢量化和创作以及固体纹理和动画中的应用。 该项目理论基础的核心是PDE及其基于基本解决方案的无网封闭式求解器。 预期新型表示将胜过基于常规扩散曲线和基于梯度网格的表示。 新的建模方案将在理论上能够以任意不连续性表达任意图像。 因此,这项研究将在矢量图形的理论和实践中推进最新的现状。 Beyond the conventional frontier of visual computing, since this research is solely built upon PDEs and their fundamental solutions, it is anticipated that other disciplines such as applied mathematics, the physical sciences, mechanical engineering, and the earth/space sciences will directly benefit from project outcomes.This project will explore a novel image vectorization modeling scheme: Poisson Vector graphics (PVG), which computes complex color gradients via a sparse set of几何原语和颜色约束。 详细的研究活动包括:(1)通过非零的laplacians阐明PVG的合理理论基础,该方法是通过利用Green用作其基本解决方案的Green功能来建立在PDE及其无网状的封闭式求解器的方法; (2)基于Green功能与谐波B-Splines之间固有连接的泊松方程的封闭形式解决方案的推导; (3)开发基于数值优化的PVG对矢量化矢量化的方法,以便可以高精度地表示它们; (4)设计具有新的泊松曲线和泊松区域的PVG的创作工具,以便用户能够比传统的第一阶或二阶扩散曲线更灵活地设计矢量图像; (5)演示新颖的PVG适用于动画。 将进行全面的定性和定量比较与当前的最新技术,以展示新框架的优势。 最终,该项目的集成方法结合了扩散曲线和梯度网格的优点,该方法能够将矢量图形的应用范围大幅扩展到视觉信息建模,分析和处理,其中数值测量很普遍。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Label Visual Feature Learning with Attentional Aggregation
Accelerating Liquid Simulation With an Improved Data‐Driven Method
  • DOI:
    10.1111/cgf.14010
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yang Gao;Quancheng Zhang;Shuai Li;A. Hao;Hong Qin
  • 通讯作者:
    Yang Gao;Quancheng Zhang;Shuai Li;A. Hao;Hong Qin
Structure Correction for Robust Volume Segmentation in Presence of Tumors
Using Virtual Digital Breast Tomosynthesis for De-Noising of Low-Dose Projection Images
In-Operando Tracking and Prediction of Transition in Material System using LSTM
使用 LSTM 对材料系统中的转变进行操作中跟踪和预测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Qin其他文献

On the structure of the two-stream instability–complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes
论双流不稳定性的结构——复杂G-哈密尔顿结构和正负作用模式之间的Kerin碰撞
  • DOI:
    10.1063/1.4954832
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ruili Zhang;Hong Qin;Ronald C. Davidson;Jian Liu;Jianyuan Xiao
  • 通讯作者:
    Jianyuan Xiao
Symplectic integrators with adaptive time step applied to runaway electron dynamics
具有自适应时间步长的辛积分器应用于失控电子动力学
  • DOI:
    10.1007/s11075-018-0636-6
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yanyan Shi;Yajuan Sun;Yang He;Hong Qin;Jian Liu
  • 通讯作者:
    Jian Liu
Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields
与时间无关的磁场中陀螺中心动力学的规范化和辛模拟
  • DOI:
    10.1063/1.4867669
  • 发表时间:
    2014-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Yifang Tang;Hong Qin;Jianyuan Xiao;Beibei Zhu
  • 通讯作者:
    Beibei Zhu
Video-based fluid reconstruction and its coupling with SPH simulation
基于视频的流体重建及其与SPH模拟的耦合
  • DOI:
    10.1007/s00371-016-1284-2
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Wang;Changbo Wang;Hong Qin;Taiyou Zhang
  • 通讯作者:
    Taiyou Zhang
A novel integrated analysis-and-simulation approach for detail enhancement in FLIP fluid interaction
一种新颖的集成分析和模拟方法,用于增强 FLIP 流体相互作用的细节

Hong Qin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Qin', 18)}}的其他基金

REU Site: Interdisciplinary Computational Biology (iCompBio)
REU 网站:跨学科计算生物学 (iCompBio)
  • 批准号:
    2149956
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PIPP Phase I: Develop and Evaluate Computational Frameworks to Predict and Prevent Future Coronavirus Pandemics
PIPP 第一阶段:开发和评估计算框架以预测和预防未来的冠状病毒大流行
  • 批准号:
    2200138
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
  • 批准号:
    1812606
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
REU Site: ICompBio - Engaging Undergraduates in Interdisciplinary Computing for Biological Research
REU 网站:ICompBio - 让本科生参与生物研究的跨学科计算
  • 批准号:
    1852042
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761839
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SFS Program: Strengthening the National Cyber Security Workforce
合作研究:SFS 计划:加强国家网络安全劳动力
  • 批准号:
    1663105
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: A Probabilistic Gene Network Model of Cellular Aging and its Application on the Conserved Lifespan Extension Mechanisms of Dietary Restriction
职业:细胞衰老的概率基因网络模型及其在饮食限制的保守寿命延长机制中的应用
  • 批准号:
    1720215
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: A Probabilistic Gene Network Model of Cellular Aging and its Application on the Conserved Lifespan Extension Mechanisms of Dietary Restriction
职业:细胞衰老的概率基因网络模型及其在饮食限制的保守寿命延长机制中的应用
  • 批准号:
    1453078
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Conference: A Strategic Planning Workshop to Explore Quantitative Biology as a Vehicle for Broadening Participation to be held at Spelman College on March 11 and 12, 2016
会议:探索定量生物学作为扩大参与的工具的战略规划研讨会将于 2016 年 3 月 11 日至 12 日在斯佩尔曼学院举行
  • 批准号:
    1602594
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Exploring Volumetric Modeling and Design Theory for Virtual Environments
EAGER:探索虚拟环境的体积建模和设计理论
  • 批准号:
    1049448
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
  • 批准号:
    32370966
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Small: Developing Novel Surface Computing Technologies and Learning Experiences to Engage Underrepresented Youth in STEM
CHS:小型:开发新颖的表面计算技术和学习体验,让代表性不足的年轻人参与 STEM
  • 批准号:
    2006524
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CHS: Small: Novel methods for material point method simulations of multiphase fluids
CHS:小型:多相流体质点法模拟的新方法
  • 批准号:
    2006570
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
  • 批准号:
    1812606
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CHS: Small: Novel Technology Augmented Methods to Improve Team-based Engineering Education for Diverse Teams
CHS:小型:新技术增强方法可改善多元化团队的团队工程教育
  • 批准号:
    1910117
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CHS: Small: A Novel P300 Brain-Computer Interface
CHS:小型:新型 P300 脑机接口
  • 批准号:
    1528214
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了