CAREER: A Probabilistic Gene Network Model of Cellular Aging and its Application on the Conserved Lifespan Extension Mechanisms of Dietary Restriction
职业:细胞衰老的概率基因网络模型及其在饮食限制的保守寿命延长机制中的应用
基本信息
- 批准号:1453078
- 负责人:
- 金额:$ 61.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aging is a fundamental question in biology, yet its mechanism remains elusive despite decades of research. Using mathematical approaches coupled with laboratory experiments, this study will illustrate the basic principles of cellular aging and shed new light on how dietary restriction extends lifespan. Using a novel mathematical model that demonstrates how aging in yeast cells emerges and what genes and their interactions are involved, the close-connection between cellular aging and the robustness of the gene interactions involved will be examined. Given the lack of adequate methods to evaluate changes in genes and their interactions involved in cellular aging, this novel mathematical approach for data analysis could transform what we know about how cells age. Coupled to this research, the educational component of the project will provide cross-disciplinary training to minority students and cultivate their interests in quantitative biology through integrating research with teaching, a student Chapter for the Society of Industrial and Applied Mathematics, tutorial workshops, and broad dissemination of educational materials. Additionally, a new Systems Biology course will contribute to a new Bioinformatics and Systems Biology minor at Spelman College. Research tutorials will be uploaded to YouTube, open research projects will be uploaded to GitHub, and an open research blog will be developed and maintained. In summary, this project will provide training to minority undergraduates in mathematics, computing, and systems biology at a historically black college for women.The overarching goal of this project will focus on aging from the perspective of gene networks through an integrated research and teaching approach. Cellular aging will be addressed using the budding yeast, a single-cell organism as a model system. The current knowledge on cellular aging lacks coherence, and a major logical gap exists between molecular pathways of aging and population characteristics of aging. Hundreds of yeast genes are known to influence lifespan, but paradoxically, not a single gene can be claimed as a direct cause of aging. Different and even opposite pathways have been observed when experiments are performed in different ways. Despite the complexity of aging, the lifespan of many species can be extended by dietary restriction. This seemingly complicated picture and the evolutionarily conserved lifespan extension effect of dietary restriction will be addressed by the core idea of the study, that cellular aging is an emergent property of stochastic gene networks. A probabilistic gene network model for cellular aging will be used to illustrate the conserved lifespan extension mechanism of dietary restriction in the model organism of Saccharomyces cerevisiae, and study how the organization and dynamics of the yeast gene networks will influence the aging process. The first objective is to test a hypothesis that dietary restriction extends lifespan by improving reliability of gene interaction through analyzing lifespan data of hundreds of yeast mutants. The second objective is to further develop the theoretical foundation of the network model for cellular aging.
衰老是生物学中的一个基本问题,尽管经过几十年的研究,其机制仍然难以捉摸。 利用数学方法和实验室实验,这项研究将阐明细胞衰老的基本原理,并为饮食限制如何延长寿命提供新的见解。使用一种新的数学模型,展示了酵母细胞中的衰老是如何出现的,以及涉及哪些基因及其相互作用,将研究细胞衰老与所涉及的基因相互作用的鲁棒性之间的密切联系。 由于缺乏足够的方法来评估基因的变化及其与细胞衰老的相互作用,这种新的数据分析数学方法可以改变我们对细胞衰老的认识。 结合这项研究,该项目的教育部分将为少数民族学生提供跨学科培训,并通过将研究与教学相结合、为工业和应用数学学会设立学生分会、辅导讲习班和广泛传播教育材料,培养他们对定量生物学的兴趣。 此外,一个新的系统生物学课程将有助于在斯佩尔曼学院新的生物信息学和系统生物学未成年人。 研究教程将被上传到YouTube,开放的研究项目将被上传到GitHub,并将开发和维护一个开放的研究博客。 总之,该项目将在一所历史悠久的黑人女子大学为少数民族大学生提供数学、计算机和系统生物学方面的培训。该项目的总体目标将通过综合研究和教学方法,从基因网络的角度关注衰老问题。 细胞老化将使用芽殖酵母,一个单细胞生物体作为模型系统。目前对细胞衰老的认识缺乏一致性,衰老的分子途径和衰老的人口特征之间存在着重大的逻辑差距。 已知有数百种酵母基因会影响寿命,但矛盾的是,没有一种基因可以被认为是衰老的直接原因。当以不同的方式进行实验时,观察到不同甚至相反的途径。尽管衰老的复杂性,许多物种的寿命可以通过饮食限制来延长。这一看似复杂的图景和饮食限制的进化保守的寿命延长效应将通过研究的核心思想来解决,即细胞衰老是随机基因网络的一个新兴特性。 本研究将利用一个细胞衰老的概率基因网络模型来阐明酿酒酵母(Saccharomycescerevisiae)模式生物中饮食限制的保守寿命延长机制,并研究酵母基因网络的组织和动力学如何影响衰老过程。第一个目标是通过分析数百个酵母突变体的寿命数据来验证饮食限制通过提高基因相互作用的可靠性来延长寿命的假设。 第二个目标是进一步发展细胞衰老网络模型的理论基础。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging
- DOI:10.1186/s12859-019-3177-7
- 发表时间:2019-11-20
- 期刊:
- 影响因子:3
- 作者:Qin, Hong
- 通讯作者:Qin, Hong
The Effect of Gaussian Noise on Maximum Likelihood Fitting of Gompertz and Weibull Mortality Models with Yeast Lifespan Data
- DOI:10.1080/0361073x.2019.1586105
- 发表时间:2019-03-15
- 期刊:
- 影响因子:1.8
- 作者:Guven, Emine;Akcay, Sevinc;Qin, Hong
- 通讯作者:Qin, Hong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Qin其他文献
Quantitative investigation of college students' financial behaviour
大学生金融行为的定量调查
- DOI:
10.1504/ijef.2014.063997 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Lijuan Sun;Hong Qin;Dave O. Jackson - 通讯作者:
Dave O. Jackson
A novel integrated analysis-and-simulation approach for detail enhancement in FLIP fluid interaction
一种新颖的集成分析和模拟方法,用于增强 FLIP 流体相互作用的细节
- DOI:
10.1145/2821592.2821598 - 发表时间:
2015-11 - 期刊:
- 影响因子:0
- 作者:
Lipeng Yang;Shuai Li;Qing Xia;Hong Qin;Aimin Hao - 通讯作者:
Aimin Hao
On the structure of the two-stream instability–complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes
论双流不稳定性的结构——复杂G-哈密尔顿结构和正负作用模式之间的Kerin碰撞
- DOI:
10.1063/1.4954832 - 发表时间:
2016 - 期刊:
- 影响因子:2.2
- 作者:
Ruili Zhang;Hong Qin;Ronald C. Davidson;Jian Liu;Jianyuan Xiao - 通讯作者:
Jianyuan Xiao
Symplectic integrators with adaptive time step applied to runaway electron dynamics
具有自适应时间步长的辛积分器应用于失控电子动力学
- DOI:
10.1007/s11075-018-0636-6 - 发表时间:
2019-01 - 期刊:
- 影响因子:2.1
- 作者:
Yanyan Shi;Yajuan Sun;Yang He;Hong Qin;Jian Liu - 通讯作者:
Jian Liu
Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields
与时间无关的磁场中陀螺中心动力学的规范化和辛模拟
- DOI:
10.1063/1.4867669 - 发表时间:
2014-03 - 期刊:
- 影响因子:2.2
- 作者:
Yifang Tang;Hong Qin;Jianyuan Xiao;Beibei Zhu - 通讯作者:
Beibei Zhu
Hong Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Qin', 18)}}的其他基金
REU Site: Interdisciplinary Computational Biology (iCompBio)
REU 网站:跨学科计算生物学 (iCompBio)
- 批准号:
2149956 - 财政年份:2022
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
PIPP Phase I: Develop and Evaluate Computational Frameworks to Predict and Prevent Future Coronavirus Pandemics
PIPP 第一阶段:开发和评估计算框架以预测和预防未来的冠状病毒大流行
- 批准号:
2200138 - 财政年份:2022
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
- 批准号:
1812606 - 财政年份:2019
- 资助金额:
$ 61.17万 - 项目类别:
Continuing Grant
REU Site: ICompBio - Engaging Undergraduates in Interdisciplinary Computing for Biological Research
REU 网站:ICompBio - 让本科生参与生物研究的跨学科计算
- 批准号:
1852042 - 财政年份:2019
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761839 - 财政年份:2018
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
CHS: Small: Novel Method for Vectorization of Arbitrary Natural Images and Its Applications
CHS:Small:任意自然图像矢量化的新方法及其应用
- 批准号:
1715985 - 财政年份:2017
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
Collaborative Research: SFS Program: Strengthening the National Cyber Security Workforce
合作研究:SFS 计划:加强国家网络安全劳动力
- 批准号:
1663105 - 财政年份:2017
- 资助金额:
$ 61.17万 - 项目类别:
Continuing Grant
CAREER: A Probabilistic Gene Network Model of Cellular Aging and its Application on the Conserved Lifespan Extension Mechanisms of Dietary Restriction
职业:细胞衰老的概率基因网络模型及其在饮食限制的保守寿命延长机制中的应用
- 批准号:
1720215 - 财政年份:2016
- 资助金额:
$ 61.17万 - 项目类别:
Continuing Grant
Conference: A Strategic Planning Workshop to Explore Quantitative Biology as a Vehicle for Broadening Participation to be held at Spelman College on March 11 and 12, 2016
会议:探索定量生物学作为扩大参与的工具的战略规划研讨会将于 2016 年 3 月 11 日至 12 日在斯佩尔曼学院举行
- 批准号:
1602594 - 财政年份:2015
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
EAGER: Exploring Volumetric Modeling and Design Theory for Virtual Environments
EAGER:探索虚拟环境的体积建模和设计理论
- 批准号:
1049448 - 财政年份:2010
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
相似海外基金
Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing
使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征
- 批准号:
10005708 - 财政年份:2020
- 资助金额:
$ 61.17万 - 项目类别:
Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing
使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征
- 批准号:
10477409 - 财政年份:2020
- 资助金额:
$ 61.17万 - 项目类别:
Predicting and controlling polygenic health traits using probabilistic models and evolution-inspired gene editing
使用概率模型和进化启发的基因编辑来预测和控制多基因健康特征
- 批准号:
10260453 - 财政年份:2020
- 资助金额:
$ 61.17万 - 项目类别:
CRII: III: A Scalable Probabilistic Model Selection Method for Deep Learning in Gene-Protein Network Inference and Integration
CRII:III:基因-蛋白质网络推理和集成中深度学习的可扩展概率模型选择方法
- 批准号:
1850492 - 财政年份:2019
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
CAREER: A Probabilistic Gene Network Model of Cellular Aging and its Application on the Conserved Lifespan Extension Mechanisms of Dietary Restriction
职业:细胞衰老的概率基因网络模型及其在饮食限制的保守寿命延长机制中的应用
- 批准号:
1720215 - 财政年份:2016
- 资助金额:
$ 61.17万 - 项目类别:
Continuing Grant
High-order/variable-order dynamic Bayesian networks and dynamic qualitative probabilistic networks --- new models of gene regulatory networks
高阶/变阶动态贝叶斯网络和动态定性概率网络——基因调控网络新模型
- 批准号:
228117-2011 - 财政年份:2015
- 资助金额:
$ 61.17万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Developing a probabilistic model for gene family evolution
合作研究:开发基因家族进化的概率模型
- 批准号:
1515691 - 财政年份:2014
- 资助金额:
$ 61.17万 - 项目类别:
Standard Grant
High-order/variable-order dynamic Bayesian networks and dynamic qualitative probabilistic networks --- new models of gene regulatory networks
高阶/变阶动态贝叶斯网络和动态定性概率网络——基因调控网络新模型
- 批准号:
228117-2011 - 财政年份:2014
- 资助金额:
$ 61.17万 - 项目类别:
Discovery Grants Program - Individual
High-order/variable-order dynamic Bayesian networks and dynamic qualitative probabilistic networks --- new models of gene regulatory networks
高阶/变阶动态贝叶斯网络和动态定性概率网络——基因调控网络新模型
- 批准号:
228117-2011 - 财政年份:2013
- 资助金额:
$ 61.17万 - 项目类别:
Discovery Grants Program - Individual
High-order/variable-order dynamic Bayesian networks and dynamic qualitative probabilistic networks --- new models of gene regulatory networks
高阶/变阶动态贝叶斯网络和动态定性概率网络——基因调控网络新模型
- 批准号:
228117-2011 - 财政年份:2012
- 资助金额:
$ 61.17万 - 项目类别:
Discovery Grants Program - Individual